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Abstract
Nonsmooth convex optimization problems are solved over fixed point sets of
nonexpansive mappings by using a distributed optimization technique. This is done
for a networked system with an operator, who manages the system, and a finite
number of users, by solving the problem of minimizing the sum of the operator’s and
users’ nondifferentiable, convex objective functions over the intersection of the
operator’s and users’ convex constraint sets in a real Hilbert space. We assume that
each of their constraint sets can be expressed as the fixed point set of an
implementable nonexpansive mapping. This setting allows us to discuss nonsmooth
convex optimization problems in which the metric projection onto the constraint set
cannot be calculated explicitly. We propose a parallel subgradient algorithm for
solving the problem by using the operator’s attribution such that it can communicate
with all users. The proposed algorithm does not use any proximity operators, in
contrast to conventional parallel algorithms for nonsmooth convex optimization. We
first study its convergence property for a constant step-size rule. The analysis
indicates that the proposed algorithm with a small constant step size approximates a
solution to the problem. We next consider the case of a diminishing step-size
sequence and prove that there exists a subsequence of the sequence generated by
the algorithm which weakly converges to a solution to the problem. We also give
numerical examples to support the convergence analyses.

MSC: 65K05; 90C25; 90C90
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1 Introduction
Convex optimization theory has been widely used to solve practical convex minimization
problems over complicated constraints, e.g., convex optimization problems with a fixed
point constraint [–] and with a variational inequality constraint [–]. It enables us
to consider constrained optimization problems in which the explicit form of the metric
projection onto the constraint set is not always known; i.e., the constraint set is not simple
in the sense that the projection cannot easily be computed (e.g., the constraint set is the
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set of all minimizers of a convex function over a closed convex set [, ], or the set of
zeros of a set-valued, monotone operator ([], Proposition .)).

This paper focuses on a networked system consisting of an operator, who manages the
system, and a finite number of participating users, and it considers the problem of mini-
mizing the sum of the operator’s and all users’ nonsmooth convex functions over the inter-
section of the operator’s and all users’ fixed point constraint sets in a real Hilbert space.

The motivations behind studying the problem are to devise optimization algorithms
which have a wider range of application compared with the previous algorithms for
smooth convex optimization (see, e.g., [, , , ]) and to tackle outstanding nonsmooth
convex problems over complicated constraint sets (e.g., the minimal antenna-subset se-
lection problem ([], Section .)).

Many algorithms have been presented for solving nonsmooth convex optimization. The
Douglas-Rachford algorithm ([], Chapters  and ), [–], forward-backward algo-
rithm ([], Chapters  and ), [, , ], and parallel proximal algorithm ([], Propo-
sition .), ([], Algorithm .), [] are useful to solve the sum of nonsmooth convex
optimization problems over the whole space. They use the proximity operators ([], Defi-
nition .) of nonsmooth, convex functions. The incremental subgradient method ([],
Section .) and the projected multi-agent algorithms [–] can minimize the sum of
nonsmooth, convex functions over a simple constraint set by using the subgradients ([],
Section ) of the nonsmooth, convex functions instead of the proximity operators. To
our knowledge, there are no references on parallel algorithms for nonsmooth convex op-
timization with fixed point constraints.

In this paper, we propose a parallel subgradient algorithm for nonsmooth convex op-
timization with fixed point constraints. Our algorithm is founded on the ideas behind
the two useful algorithms. The first is the Krasnosel’skiı̆-Mann algorithm ([], Subchap-
ter .), [, ] for finding a fixed point of a nonexpansive mapping. It ensures that our
algorithm converges to a point in the intersection of the fixed point sets of nonexpan-
sive mappings. The second algorithm is the parallel proximal algorithm ([], Proposi-
tion .), ([], Algorithm .), [] for nonsmooth convex optimization. Since the
operator can communicate with all users, our parallel algorithm enables the operator to
find a solution to the main problem by using information transmitted from all users.

This paper has three contributions in relation to other work on convex optimization.
The first is that our algorithm does not use any proximity operators, in contrast to the
algorithms presented in [, , –]. Our algorithm can use subgradients, which are
well defined for any nonsmooth, convex functions.

The second contribution is that our parallel algorithm can be applied to nonsmooth
convex optimization problems over the fixed point sets of nonexpansive mappings, while
the previous algorithms work in nonsmooth convex optimization over simple constraint
sets ([], Subchapter .), [, –] or smooth convex optimization over fixed point
sets [–, , ].

The third contribution is to present convergence analyses for different step-size rules.
We show that our algorithm with a small constant step size approximates a solution to
the problem of minimizing the sum of nonsmooth, convex functions over the fixed point
sets of nonexpansive mappings. We also show that there exists a subsequence of the se-
quence generated by our algorithm with a diminishing step size which weakly converges
to a solution to the problem.
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This paper is organized as follows. Section  gives the mathematical preliminaries and
states the main problem. Section  presents the parallel subgradient algorithm for solving
the main problem and studies its convergence properties for a constant step size and a
diminishing step size. Section  provides numerical examples of the algorithm. Section 
concludes the paper.

2 Mathematical preliminaries
2.1 Nonexpansivity and subdifferentiability
Let H be a real Hilbert space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let N
denote the set of all positive integers including zero.

A mapping, T : H → H , is said to be nonexpansive ([], Definition .(ii)) if ‖T(x) –
T(y)‖ ≤ ‖x – y‖ (x, y ∈ H). T is said to be firmly nonexpansive ([], Definition .(i)) if
‖T(x) – T(y)‖ + ‖(Id – T)(x) – (Id – T)(y)‖ ≤ ‖x – y‖ (x, y ∈ H), where Id stands for the
identity mapping on H . It is clear that firm nonexpansivity implies nonexpansivity. The
fixed point set of T is denoted by Fix(T) := {x ∈ H : T(x) = x}. The metric projection ([],
Subchapter ., Chapter ) onto a nonempty, closed convex set C (⊂ H) is denoted by PC .
It is defined by PC(x) ∈ C and ‖x – PC(x)‖ = infy∈C ‖x – y‖ (x ∈ H).

Proposition . Let T : H → H be nonexpansive, and let C (⊂ H) be nonempty, closed,
and convex. Then:

(i) ([], Corollary .) Fix(T) is closed and convex.
(ii) ([], Remark .(iii)) (/)(Id + T) is firmly nonexpansive.

(iii) ([], Proposition ., equation (.)) PC is firmly nonexpansive with Fix(PC) = C.

The subdifferential ([], Definition .), ([], Section ) of f : H → R is defined for
all x ∈ H by

∂f (x) :=
{

u ∈ H : f (y) ≥ f (x) + 〈y – x, u〉 (y ∈ H)
}

.

We call u (∈ ∂f (x)) the subgradient of f at x ∈ H .

Proposition . ([], Proposition .(ii) and (iii)) Let f : H → R be continuous and
convex with dom(f ) := {x ∈ H : f (x) < ∞} = H . Then ∂f (x) �= ∅ (x ∈ H). Moreover, for all
x ∈ H , there exists δ >  such that ∂f (B(x; δ)) is bounded, where B(x; δ) stands for a closed
ball with center x and radius δ.

2.2 Notation, assumptions, and main problem
This paper deals with a networked system with an operator (denoted by user ) and I
users. Let

I := {, , . . . , I} and Ī := {} ∪ I .

We assume that user i (i ∈ Ī) has its own private mappings, denoted by f (i) : H → R and
T (i) : H → H , and its own private nonempty, closed convex constraint set, denoted by C(i)

(⊂ H). Moreover, we define

X :=
⋂

i∈Ī
Fix

(
T (i)), f :=

∑

i∈Ī
f (i), X� :=

{
x ∈ X : f (x) = f � := inf

y∈X
f (y)

}
.
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The following problem is discussed.

Problem . Assume that:
(A) T (i) : H → H (i ∈ Ī) is firmly nonexpansive with Fix(T (i)) = C(i).
(A) f (i) : H →R (i ∈ Ī) is continuous and convex with dom(f (i)) = H .
(A) User i (i ∈ Ī) can use its own private T (i) and ∂f (i).
(A) The operator can communicate with all users.
(A) X� is nonempty.

The main objective is to find x� ∈ X�.

Assumption (A) and Proposition . ensure that ∂f (i)(x) �= ∅ (i ∈ Ī , x ∈ H). Suppose
that the operator sets x̂ ∈ H . Accordingly, (A) guarantees that the operator can trans-
mit x̂ to all users. Assumption (A) implies that user i (i ∈ Ī) can compute in parallel
x̂(i) := x̂(i)(x̂, T (i), ∂f (i)) by using the information x̂ transmitted from the operator and its
own private information. Moreover, (A) ensures that the operator has access to all x̂(i)

and can compute x̄ := x̄(x̂(), x̂(), . . . , x̂(I)). The next section describes a sufficient condition
for satisfying (A).

3 Parallel subgradient algorithm for nonsmooth convex optimization over
fixed point sets

This section presents a parallel subgradient algorithm for solving Problem ..

Algorithm .

Step . The operator (user ) and all users set α (∈ (, )) and (λn)n∈N (⊂ (,∞)). The op-
erator chooses x ∈ H arbitrarily and transmits it to all users.

Step . Given xn ∈ H , user i (i ∈ Ī) computes x(i)
n ∈ H by

⎧
⎨

⎩
g(i)

n ∈ ∂f (i)(xn),

x(i)
n := αxn + ( – α)T (i)(xn – λng(i)

n ).

User i (i ∈ I) transmits x(i)
n to the operator.

Step . The operator computes xn+ ∈ H as

xn+ :=


I + 
∑

i∈Ī
x(i)

n

and transmits it to all users. Put n := n + , and go to Step .

Our convergence results depend on the following assumption.

Assumption . The sequence, (x(i)
n )n∈N (i ∈ Ī), generated by Algorithm . is bounded.

We shall provide examples satisfying Assumption .. User i (i ∈ Ī) in an actual network
[, –] has a bounded C(i) defined by the intersection of simple, closed convex sets C(i)

k
(k ∈ K(i) := {, , . . . , K (i)}) (e.g., C(i)

k is an affine subspace, a half-space, or a hyperslab) and
P(i)

k := PC(i)
k

can easily be computed within a finite number of arithmetic operations [],

([], Chapter ). Then user i can choose a bounded X(i) (⊃ C(i)) such that P(i) := PX(i)
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is easily computed (e.g., X(i) = Fix(P(i)) is a closed ball with a large enough radius). Since
X(i) is bounded and X ⊂ C(i) ⊂ X(i) (i ∈ Ī), X is also bounded. Hence, the continuity and
convexity of f ensure that X� �= ∅, i.e., (A) holds ([], Proposition .). In this case, user
i can use

T (i) :=



[
Id +

∏

k∈K(i)

P(i)
k

]
with Fix

(
T (i)) = C(i) ⊂ X(i). ()

Proposition .(ii) and (iii) guarantee that T (i) defined by () satisfies the firm nonexpan-
sivity condition. Moreover, user i can compute

x(i)
n := P(i)(αxn + ( – α)T (i)(xn – λng(i)

n
))

()

instead of x(i)
n in Algorithm .. Since X(i) is bounded and (x(i)

n )n∈N ⊂ X(i), (x(i)
n )n∈N is

bounded. We can prove that Algorithm . with () satisfies the properties in the main
theorems (Theorems . and .) by referring to the proofs of the theorems.

The following lemma yields some properties of Algorithm . that will be used to prove
the main theorems.

Lemma . Suppose that Assumptions (A)-(A) and . are satisfied, lim supn→∞ λn < ∞,
and y(i)

n := T (i)(xn – λng(i)
n ) (n ∈N, i ∈ Ī). Then the following properties hold:

(i) (g(i)
n )n∈N, (y(i)

n )n∈N (i ∈ Ī), and (xn)n∈N are bounded.
(ii) For all x ∈ X and for all n ∈N,

‖xn+ – x‖ ≤ ‖xn – x‖ + Mλn –
 – α

I + 
∑

i∈Ī

∥∥xn – y(i)
n

∥∥,

where M := maxi∈Ī(sup{|〈y(i)
n – x, g(i)

n 〉| : n ∈ N}) < ∞.
(iii) For all x ∈ X and for all n ∈N,

‖xn+ – x‖ ≤ ‖xn – x‖ +
( – α)λn

I + 
(
f (x) – f (xn)

)
+ M( – α)λ

n,

where M := maxi∈Ī (sup{‖g(i)
n ‖ : n ∈N}) < ∞.

Proof (i) Assumption . and the definition of xn (n ∈ N) ensure the boundedness of
(xn)n∈N. Hence, from (A) and Proposition ., we find that (g(i)

n )n∈N (i ∈ Ī) is also bounded.
Assumption (A) implies that, for all x ∈ X, for all n ∈N, and for all i ∈ Ī ,

∥∥y(i)
n – x

∥∥ =
∥∥T (i)(xn – λng(i)

n
)

– T (i)(x)
∥∥ ≤ ∥∥(

xn – λng(i)
n

)
– x

∥∥.

Accordingly, the boundedness of (xn)n∈N and (g(i)
n )n∈N (i ∈ Ī) and lim supn→∞ λn < ∞ imply

that (y(i)
n )n∈N (i ∈ Ī) is also bounded.

(ii) Choose x ∈ X arbitrarily and put M := maxi∈Ī(sup{|〈y(i)
n – x, g(i)

n 〉| : n ∈ N}).
Lemma .(i) guarantees that M < ∞. Assumption (A) ensures that, for all n ∈ N and
for all i ∈ Ī ,

∥∥y(i)
n – x

∥∥ =
∥∥T (i)(xn – λng(i)

n
)

– T (i)(x)
∥∥

≤ ∥∥(
xn – λng(i)

n
)

– x
∥∥ –

∥∥(
xn – λng(i)

n
)

– y(i)
n

∥∥,
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which, together with ‖x – y‖ = ‖x‖ – 〈x, y〉 + ‖y‖ (x, y ∈ H), means that

∥∥y(i)
n – x

∥∥ ≤ ‖xn – x‖ – λn
〈
xn – x, g(i)

n
〉
+ λ

n
∥∥g(i)

n
∥∥

–
∥∥xn – y(i)

n
∥∥ + λn

〈
xn – y(i)

n , g(i)
n

〉
– λ

n
∥∥g(i)

n
∥∥

≤ ‖xn – x‖ –
∥∥xn – y(i)

n
∥∥ + Mλn. ()

The convexity of ‖ · ‖ implies that, for all n ∈ N and for all i ∈ Ī ,

∥∥x(i)
n – x

∥∥ =
∥∥α(xn – x) + ( – α)

(
y(i)

n – x
)∥∥

≤ α‖xn – x‖ + ( – α)
∥∥y(i)

n – x
∥∥, ()

which, together with (), means that, for all n ∈N and for all i ∈ Ī ,

∥∥x(i)
n – x

∥∥ ≤ ‖xn – x‖ – ( – α)
∥∥xn – y(i)

n
∥∥ + Mλn.

Summing up this inequality over all i guarantees that, for all n ∈N,


I + 

∑

i∈Ī

∥∥x(i)
n – x

∥∥ ≤ ‖xn – x‖ –
 – α

I + 
∑

i∈Ī

∥∥xn – y(i)
n

∥∥ + Mλn.

Accordingly, from the definition of xn (n ∈ N) and the convexity of ‖ · ‖, we find that, for
all n ∈N,

‖xn+ – x‖ ≤ 
I + 

∑

i∈Ī

∥∥x(i)
n – x

∥∥

≤ ‖xn – x‖ –
 – α

I + 
∑

i∈Ī

∥∥xn – y(i)
n

∥∥ + Mλn.

(iii) Choose x ∈ X arbitrarily. Then () and the definition of g(i)
n (n ∈ N, i ∈ Ī) imply that,

for all n ∈N and for all i ∈ Ī ,

∥∥y(i)
n – x

∥∥ ≤ ‖xn – x‖ + λn
〈
x – xn, g(i)

n
〉
+ λ

n
∥∥g(i)

n
∥∥

≤ ‖xn – x‖ + λn
(
f (i)(x) – f (i)(xn)

)
+ Mλ


n,

where M := maxi∈Ī(sup{‖g(i)
n ‖ : n ∈ N}) < ∞ (M < ∞ is guaranteed by Lemma .(i)).

Accordingly, () guarantees that, for all n ∈N and for all i ∈ Ī ,

∥∥x(i)
n – x

∥∥ ≤ ‖xn – x‖ + ( – α)λn
(
f (i)(x) – f (i)(xn)

)
+ M( – α)λ

n,

which, together with the convexity of ‖ · ‖ and f :=
∑

i∈Ī f (i), implies that, for all n ∈ N,

‖xn+ – x‖ ≤ 
I + 

∑

i∈Ī

∥∥x(i)
n – x

∥∥

≤ ‖xn – x‖ +
( – α)λn

I + 
∑

i∈Ī

(
f (i)(x) – f (i)(xn)

)
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+ M( – α)λ
n

= ‖xn – x‖ +
( – α)λn

I + 
(
f (x) – f (xn)

)
+ M( – α)λ

n.

This completes the proof. �

3.1 Constant step-size rule
The discussion in this subsection makes the following assumption.

Assumption . User i (i ∈ Ī) has (λn)n∈N satisfying

(C) λn := λ ∈ (,∞) (n ∈N).

Let us perform a convergence analysis on Algorithm . under Assumption ..

Theorem . Suppose that Assumptions (A)-(A), ., and . hold. Then the sequence,
(xn)n∈N, generated by Algorithm . satisfies, for all i ∈ Ī ,

lim inf
n→∞

∥∥xn – T (i)(xn)
∥∥ ≤ Mλ and lim inf

n→∞ f (xn) ≤ f � +
(I + )Mλ


,

where M and M are constants defined as in Lemma ., M := maxi∈Ī(sup{‖xn – y(i)
n ‖ : n ∈

N}), and M := (I + )M/( – α) + M
√

M + Mλ.

Let us compare Algorithm . under the assumptions in Theorem . with previous algo-
rithms ([], Section .), ([], Chapters  and ), [, –]. The following sequence
(xn)n∈N is generated by a parallel proximal algorithm ([], Chapters  and ), [, ,
] that can be applied to signal and image processing: given (λn)n∈N ⊂ (, ), y(i)

n ∈ H ,
(a(i)

n )n∈N ⊂ H (i = , , . . . , m), and xn ∈ H ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(i)
n := proxγ f (i)/ω(i) y(i)

n + a(i)
n (i = , , . . . , m),

pn :=
∑m

i= ω(i)p(i)
n ,

y(i)
n+ := y(i)

n + λn(pn – xn – p(i)
n ) (i = , , . . . , m),

xn+ := xn + λn(pn – xn),

()

where γ ∈ (, ), (ω(i))m
i= (⊂ (, )) satisfies

∑m
i= ω(i) = , and proxf (i) stands for the proxim-

ity operator of f (i) which maps every x ∈ H to the unique minimizer of f (i) + (/)‖x – ·‖.
(See ([], Tables . and .) for examples of convex functions for which proximity
operators can be explicitly computed.) When (λn)n∈N satisfies

∑∞
n= λn( – λn) = ∞ (e.g.,

λn := λ ∈ (, ) (n ∈ N) satisfies this condition) and
∑∞

n= λn‖a(i)
n ‖ < ∞ (i = , , . . . , m),

(xn)n∈N in algorithm () converges to a minimizer of
∑m

i= f (i) over H ([], Theorem .).
Suppose that C(i) (i ∈ Ī) is simple in the sense that PC(i) can easily be computed (e.g.,

C(i) is an affine subspace, a half-space, or a hyperslab). Algorithm . with λn := λ ∈ (,∞)
(n ∈N) and T (i) = PC(i) (i ∈ Ī) is as follows: given g(i)

n ∈ ∂f (i)(xn) (i ∈ Ī),

⎧
⎨

⎩
x(i)

n := αxn + ( – α)PC(i) (xn – λg(i)
n ) (i = , , . . . , I),

xn+ := 
I+

∑
i∈Ī x(i)

n .
()
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We can see that algorithm () uses the subgradient g(i)
n ∈ ∂f (i)(xn), while algorithm () uses

the proximity operator of f (i). Theorem . says that under the assumptions in Theorem .
algorithm () satisfies, for all i ∈ Ī ,

lim inf
n→∞

∥∥xn – PC(i) (xn)
∥∥ ≤ Mλ and lim inf

n→∞ f (xn) ≤ f � +
(I + )Mλ


.

Therefore, we can expect that algorithm () with a small enough λ approximates a mini-
mizer of f over

⋂
i∈Ī C(i).

Let us also assume C := C(i) (i ∈ Ī). The following incremental subgradient method ([],
Section .) can solve the problem of minimizing f over C: given λ >  and xn = x()

n =
x(I)

n– ∈R
N ,

⎧
⎨

⎩
x(i)

n := PC(x(i–)
n – λg(i)

n ), g(i)
n ∈ ∂f (i)(x(i–)

n ) (i = , , . . . , I),

xn+ := x(I)
n .

()

Algorithm () satisfies

lim inf
n→∞ f (xn) ≤ f ∗ +

Dλ


,

where {x ∈ C : f (x) = f ∗ := infy∈C f (y)} �= ∅, D :=
∑

i∈I D(i), D(i) := sup{‖g‖ : g ∈ ∂f (i)(xn) ∪
∂f (i)(x(i–)

n ), n ∈ N} (i ∈ I), and one assumes that D(i) < ∞ (i ∈ I) ([], Proposition ..).
In contrast to the above convergence analysis of the incremental subgradient method (),
Theorem . guarantees that, if x ∈ C, the parallel algorithm () with PC = PC(i) (i ∈ Ī)
satisfies

xn ∈ C (n ∈ N) and lim inf
n→∞ f (xn) ≤ f ∗ +

(I + )Mλ


.

We can see that the previous algorithms () and () can be applied to the case where
the projections onto constraint sets can easily be computed, whereas Algorithm . can
be applied even when C(i) (i ∈ Ī) has a more complicated form (see, e.g., ()).

Now, we shall prove Theorem ..

Proof First, let us show that

lim inf
n→∞

∑

i∈Ī

∥∥xn – y(i)
n

∥∥ ≤ (I + )Mλ

 – α
. ()

Assume that () does not hold. Accordingly, we can choose δ >  such that

lim inf
n→∞

∑

i∈Ī

∥∥xn – y(i)
n

∥∥ >
(I + )Mλ

 – α
+ δ.

The property of the limit inferior of (
∑

i∈Ī ‖xn – y(i)
n ‖)n∈N guarantees that there exists n ∈

N such that lim infn→∞
∑

i∈Ī ‖xn – y(i)
n ‖ – δ ≤ ∑

i∈Ī ‖xn – y(i)
n ‖ for all n ≥ n. Accordingly,
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for all n ≥ n,

∑

i∈Ī

∥∥xn – y(i)
n

∥∥ >
(I + )Mλ

 – α
+ δ.

Hence, Lemma .(ii) leads us to that, for all n ≥ n and for all x ∈ X,

‖xn+ – x‖ < ‖xn – x‖ + Mλ –
 – α

I + 

{
(I + )Mλ

 – α
+ δ

}

= ‖xn – x‖ –
 – α

I + 
δ.

Therefore, induction ensures that, for all n ≥ n and for all x ∈ X,

 ≤ ‖xn+ – x‖ < ‖xn – x‖ –
 – α

I + 
δ(n +  – n).

Since the right side of the above inequality approaches minus infinity when n di-
verges, we have a contradiction. Therefore, () holds. Since lim infn→∞ ‖xn – y(i)

n ‖ ≤
lim infn→∞

∑
i∈Ī ‖xn – y(i)

n ‖ (i ∈ Ī), we also find that

lim inf
n→∞

∥∥xn – y(i)
n

∥∥ ≤ (I + )Mλ

 – α
(i ∈ Ī). ()

From the triangle inequality we see that, for all n ∈ N and for all i ∈ Ī , ‖xn – T (i)(xn)‖ ≤
‖xn –y(i)

n ‖+‖y(i)
n –T (i)(xn)‖, which, together with M := maxi∈Ī(sup{‖xn –y(i)

n ‖ : n ∈N}) < ∞
and ‖y(i)

n – T (i)(xn)‖ ≤ ‖(xn – λg(i)
n ) – xn‖ ≤ √

Mλ (n ∈ N, i ∈ Ī), means that, for all n ∈ N

and for all i ∈ Ī ,

∥∥xn – T (i)(xn)
∥∥ ≤ ∥∥xn – y(i)

n
∥∥ + 

√
MMλ + Mλ

.

Thus, () guarantees that

lim inf
n→∞

∥∥xn – T (i)(xn)
∥∥ ≤ lim inf

n→∞
[∥∥xn – y(i)

n
∥∥ + (

√
MM + Mλ)λ

]

= lim inf
n→∞

∥∥xn – y(i)
n

∥∥ + (
√

MM + Mλ)λ

≤
(

(I + )M

 – α
+ 

√
MM + Mλ

)
λ.

Next, let us show that

lim inf
n→∞ f (xn) ≤ f � +

(I + )Mλ


. ()

Assume that () does not hold. Since (A) guarantees that x� ∈ X exists such that f (x�) =
f �, we can choose ε >  such that

lim inf
n→∞ f (xn) > f

(
x�

)
+

(I + )Mλ


+ ε.
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From the property of the limit inferior of (f (xn))n∈N, there exists n ∈ N such that
lim infn→∞ f (xn) – ε ≤ f (xn) for all n ≥ n. Accordingly, for all n ≥ n,

f (xn) – f
(
x�

)
>

(I + )Mλ


+ ε. ()

Therefore, from Lemma .(iii) and () we see that, for all n ≥ n,

∥∥xn+ – x�
∥∥ <

∥∥xn – x�
∥∥ + M( – α)λ +

( – α)λ
I + 

{
–

(I + )Mλ


– ε

}

=
∥∥xn – x�

∥∥ –
( – α)λ

I + 
ε,

which implies that, for all n ≥ n,

∥∥xn+ – x�
∥∥ <

∥∥xn – x�
∥∥ –

( – α)λ
I + 

ε(n +  – n).

Since the above inequality does not hold for large enough n, we have arrived at a contra-
diction. Therefore, () holds. This completes the proof. �

3.2 Diminishing step-size rule
The discussion in this subsection makes the following assumption.

Assumption . User i (i ∈ Ī) has (λn)n∈N satisfying

(C) lim
n→∞λn =  and

∞∑

n=

λn = ∞.

An example of (λn)n∈N is λn := /(n + )a (n ∈N), where a ∈ (, ].
Let us perform a convergence analysis on Algorithm . under Assumption ..

Theorem . Suppose that Assumptions (A)-(A), ., and . hold. Then there exists a
subsequence of (xn)n∈N generated by Algorithm . which weakly converges to a point in X�.

Let us compare Algorithm . under the assumptions in Theorem . with the previous
gradient algorithms with diminishing step sizes ([], Section .), []. Suppose that C :=
C(i) (i ∈ Ī). The sequence (xn)n∈N is generated by the incremental subgradient method
([], Section .) as follows (see also ()): given (λn)n∈N with (C), and xn = x()

n = x(I)
n– ∈

R
N ,

⎧
⎨

⎩
x(i)

n := PC(x(i–)
n – λng(i)

n ), g(i)
n ∈ ∂f (i)(x(i–)

n ) (i = , , . . . , I),

xn+ := x(I)
n .

The incremental subgradient method satisfies

lim inf
n→∞ f (xn) = f ∗,

where {x ∈ C : f (x) = f ∗ := infy∈C f (y)} �= ∅, D(i) := sup{‖g‖ : g ∈ ∂f (i)(xn)∪∂f (i)(x(i–)
n ), n ∈N}

(i ∈ I), and one assumes that D(i) < ∞ (i ∈ I) ([], Proposition ..).
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The following broadcast gradient method ([], Algorithm .) can minimize the sum of
convex, smooth functionals over the intersection of fixed point sets: given x(i)

 ∈ H (i ∈ Ī),

⎧
⎨

⎩
x(i)

n+ := αnx(i)
 + ( – αn)T (i)(xn – λn∇f (i)(xn)) (i = , , . . . , I),

xn+ := 
I+

∑
i∈Ī x(i)

n+,

where ∇f (i) (i ∈ I) is the Lipschitz continuous gradient of f (i), and (αn)n∈N and (λn)n∈N are
slowly diminishing sequences such as λn := /(n + )a and αn := /(n + )b (n ∈ N), where
a ∈ (, /), b ∈ (a,  – a). The sequence (xn)n∈N weakly converges to a minimizer of f over
X ([], Theorem .).

Meanwhile, Algorithm . works even when f (i) (i ∈ I) is convex and nondifferentiable
and T (i) (i ∈ Ī) is firmly nonexpansive. Theorem . guarantees that there exists a sub-
sequence of (xn)n∈N in Algorithm . with (C) such that it weakly converges to a point
in X�.

The rest of this subsection gives the proof of Theorem ..

Proof Fix x ∈ X arbitrarily. We will distinguish two cases.
Case : Suppose that m ∈ N exists such that ‖xn+ – x‖ ≤ ‖xn – x‖ (n ≥ m). Lem-

ma .(ii) means that, for all n ∈N,

 – α

I + 
∑

i∈Ī

∥∥xn – y(i)
n

∥∥ ≤ ‖xn – x‖ – ‖xn+ – x‖ + Mλn,

which, together with the existence of limn→∞ ‖xn – x‖ and limn→∞ λn = , implies that
limn→∞( – α)/(I + )

∑
i∈Ī ‖xn – y(i)

n ‖ = , i.e.,

lim
n→∞

∥∥xn – y(i)
n

∥∥ =  (i ∈ Ī). ()

Moreover, (A) (the nonexpansivity of T (i) (i ∈ Ī)) guarantees that, for all n ∈N and i ∈ Ī ,
‖y(i)

n –T (i)(xn)‖ ≤ ‖(xn –λng(i)
n )–xn‖ ≤ √

Mλn, which, together with limn→∞ λn = , means
that

lim
n→∞

∥∥y(i)
n – T (i)(xn)

∥∥ =  (i ∈ Ī). ()

Since the triangle inequality implies ‖xn – T (i)(xn)‖ ≤ ‖xn – y(i)
n ‖ + ‖y(i)

n – T (i)(xn)‖ (n ∈ N,
i ∈ Ī), () and () guarantee that

lim
n→∞

∥∥xn – T (i)(xn)
∥∥ =  (i ∈ Ī). ()

Here, we define, for all n ∈N,

Mn := ( – α)
{


I + 

(
f (xn) – f (x)

)
– Mλn

}
.

Then Lemma .(iii) implies that, for all n ∈ N, λnMn ≤ ‖xn+ – x‖ – ‖xn – x‖, which
means

∑m
n= λnMn ≤ ‖x – x‖ – ‖xm+ – x‖ ≤ ‖x – x‖ < ∞ (m ∈ N). Accordingly, we find
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that

∞∑

n=

λnMn < ∞.

Therefore, from
∑∞

n= λn = ∞, we find that

lim inf
n→∞ Mn ≤ . ()

Indeed, let us assume that lim infn→∞ Mn ≤  does not hold, i.e., lim infn→∞ Mn > . Then
there exist m ∈ N and γ >  such that Mn ≥ γ for all n ≥ m. From

∑∞
n= λn = ∞, we

have ∞ = γ
∑∞

n=m
λn ≤ ∑∞

n=m
λnMn < ∞, which is a contradiction. Hence, () holds.

Accordingly, from limn→∞ λn = , we find that

 ≥ lim inf
n→∞

{


I + 
(
f (xn) – f (x)

)
– Mλn

}

=


I + 
lim inf

n→∞
(
f (xn) – f (x)

)
– M lim

n→∞λn

=


I + 
lim inf

n→∞
(
f (xn) – f (x)

)
.

This means there is a subsequence (xnl )l∈N of (xn)n∈N such that

lim
l→∞

f (xnl ) = lim inf
n→∞ f (xn) ≤ f (x) (x ∈ X). ()

The boundedness of (xnl )l∈N guarantees that (xnlm )m∈N (⊂ (xnl )l∈N) exists such that
(xnlm )m∈N weakly converges to x� ∈ H . Here, fix i ∈ Ī arbitrarily and assume that x� /∈
Fix(T (i)). From Opial’s condition ([], Lemma ), (), and the nonexpansivity of T (i), we
produce a contradiction:

lim inf
m→∞ ‖xnlm – x�‖ < lim inf

m→∞
∥∥xnlm – T (i)(x�)

∥∥

= lim inf
m→∞

∥∥xnlm – T (i)(xnlm ) + T (i)(xnlm ) – T (i)(x�)
∥∥

= lim inf
m→∞

∥∥T (i)(xnlm ) – T (i)(x�)
∥∥

≤ lim inf
m→∞ ‖xnlm – x�‖.

Hence, x� ∈ Fix(T (i)) (i ∈ Ī), i.e., x� ∈ X. Moreover, since f is weakly lower semicontinuous
([], Theorem .) and (), we find that

f (x�) ≤ lim inf
m→∞ f (xnlm ) = lim

l→∞
f (xnl ) ≤ f (x) (x ∈ X).

Therefore, x� ∈ X�.
Let us take another subsequence (xnlk

)k∈N (⊂ (xnl )l∈N) which weakly converges to
x�� ∈ H . A similar discussion to the one for obtaining x� ∈ X� ensures that x�� ∈ X�. As-
sume that x� �= x��. The existence of limn→∞ ‖xn – x‖ (x ∈ X) and Opial’s condition ([],
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Lemma ) imply that

lim
n→∞‖xn – x�‖ = lim

m→∞‖xnlm – x�‖ < lim
m→∞‖xnlm – x��‖

= lim
n→∞‖xn – x��‖ = lim

k→∞
‖xnlk

– x��‖ < lim
k→∞

‖xnlk
– x�‖

= lim
n→∞‖xn – x�‖,

which is a contradiction. Hence, x� = x��. Accordingly, any subsequence of (xnl )l∈N con-
verges weakly to x� ∈ X�, i.e., (xnl )l∈N converges weakly to x� ∈ X�. This means that x� is
a weak cluster point of (xn)n∈N and belongs to X�. A similar discussion to the one for ob-
taining x� = x�� guarantees that there is only one weak cluster point of (xn)n∈N, and hence,
we can conclude that, in Case , (xn)n∈N weakly converges to a point in X�.

Case : Suppose that (xnj ) (⊂ (xn)n∈N) exists such that ‖xnj – x‖ < ‖xnj+ – x‖ for all j ∈N.
Lemma .(ii) means that, for all j ∈N,

 – α

I + 
∑

i∈Ī

∥∥xnj – y(i)
nj

∥∥ ≤ ‖xnj – x‖ – ‖xnj+ – x‖ + Mλnj < Mλnj ,

which, together with limn→∞ λn = , implies that

lim
j→∞

∥∥xnj – y(i)
nj

∥∥ =  (i ∈ Ī). ()

Therefore, a similar discussion to the one for obtaining () ensures that

lim
j→∞

∥∥xnj – T (i)(xnj )
∥∥ =  (i ∈ Ī). ()

Since Lemma .(iii) implies that λnj Mnj ≤ ‖xnj – x‖ – ‖xnj+ – x‖ <  (j ∈ N) and λnj > 
(j ∈N), we find that Mnj <  (j ∈N), i.e., for all j ∈ N,


I + 

(
f (xnj ) – f (x)

)
< Mλnj .

Since limn→∞ λn =  implies that


I + 

lim sup
j→∞

(
f (xnj ) – f (x)

) ≤ M lim
j→∞λnj = ,

we find that

lim sup
j→∞

f (xnj ) ≤ f (x) (x ∈ X). ()

Inequality () ensures the existence of (xnjk
)k∈N of (xnj )j∈N such that

lim
k→∞

f (xnjk
) = lim sup

j→∞
f (xnj ) ≤ f (x) (x ∈ X). ()

Since (xnjk
)k∈N is bounded, we have (xnjkl

)l∈N, which weakly converges to x∗ ∈ H . A similar
discussion to the one for obtaining x� ∈ X and () leads us to x∗ ∈ X. Moreover, the weakly
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lower semicontinuity of f ([], Theorem .) and () guarantee that

f (x∗) ≤ lim inf
l→∞

f (xnjkl
) = lim

k→∞
f (xnjk

) ≤ f (x) (x ∈ X), i.e., x∗ ∈ X�.

Therefore, there exists a subsequence of (xn)n∈N such that it weakly converges to a point
in X�. This completes the proof. �

4 Numerical examples
Let us look at some numerical examples to see how Algorithm . works depending on the
choice of step size. Consider the following problem: given a(i) > , b(i) ∈ R, d(i)

k ∈ R, and
c(i)

k ∈R
I+ with c(i)

k �=  (i ∈ Ī := {, , , . . . , I}, k ∈K := {, , . . . , K}),

minimize
∑

i∈Ī

∣∣a(i)x(i) + b(i)∣∣ subject to (x(i))i∈Ī ∈ C ∩
⋂

i∈Ī
C(i), ()

where f (i)(x) := |a(i)x + b(i)| (i ∈ Ī , x ∈R), C(i)
k (⊂R

I+) (i ∈ Ī , k ∈K) is a half-space defined
by C(i)

k := {x ∈ R
I+ : 〈c(i)

k , x〉 ≤ d(i)
k }, C(i) :=

⋂
k∈K C(i)

k �= ∅ (i ∈ Ī), C (⊂ R
I+) is a closed ball,

and C ∩ ⋂
i∈Ī C(i) �= ∅.

We will assume that user i (i ∈ Ī) computes

x(i)
n := PC

(
αxn + ( – α)T (i)(xn – λng(i)

n
))

(n ∈N),

where T (i) is defined by

T (i) :=



[
Id + PC

∏

k∈K
P(i)

k

]
,

P(i)
k := PC(i)

k
(k ∈K), g(i)

n = (, , . . . , , ḡ(i)
n , , , . . . , ), and

ḡ(i)
n ∈ ∂f (i)(xn(i)) :=

⎧
⎪⎪⎨

⎪⎪⎩

–a(i) (–∞ < xn(i) < – b(i)

a(i) ),

[–a(i), a(i)] (xn(i) = – b(i)

a(i) ),

a(i) (– b(i)

a(i) < xn(i) < ∞).

Since (x(i)
n )n∈N ⊂ C (i ∈ Ī), the boundedness of C means Assumption . holds (see also

() and ()). Moreover, the continuity and convexity of f ensures that X� �= ∅ ([], Propo-
sition .). The projections PC and P(i)

k (i ∈ Ī , k ∈ K) can be computed within a finite
number of arithmetic operations ([], Chapter ), and hence, T (i) (i ∈ Ī) can also be
computed easily. User i can randomly choose ā(i) ∈ ∂f (i)(–b(i)/a(i)) = [–a(i), a(i)].

The experiment used a .-inch MacBook Pro with a . GHz Intel Core i processor
and  GB  MHz DDR memory. Algorithm . was written in MATLAB .. We set
I :=  and K := , and used a(i), b(i), c(i)

k , d(i)
k , and ā(i) randomly generated by MATLAB. We

used

α :=



, λn :=



,


 ,


(n + )a (n ∈ N), where a = ., .

We performed  samplings, each starting from different random initial points given by
MATLAB, and averaged their results.
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We used the following performance measures: for each n ∈N,

Dn :=




∑

s=

∑

i∈Ī

∥∥xn(s) – T (i)(xn(s)
)∥∥ and

Fn :=




∑

s=

∑

i∈Ī

∣∣a(i)xn(i)(s) + b(i)∣∣,

where (xn(s))n∈N is the sequence generated by the initial point x(s) (s = , , . . . , )
and Algorithm ., and xn(s) := (xn(i)(s))i∈Ī (n ∈ N, s = , , . . . , ). Dn (n ∈ N) stands
for the mean value of the sums of the squared distances between xn(s) and T (i)(xn(s))
(i ∈ Ī , s = , , . . . , ). If (Dn)n∈N converges to , Algorithm . converges to a point
in

⋂
i∈Ī Fix(T (i)) = C ∩ ⋂

i∈Ī C(i). Fn (n ∈ N) is the mean value of the objective function
∑

i∈Ī f (i)(xn(i)(s)) (s = , , . . . , ).
Figure  indicates the behavior of Dn for Algorithm .. We can see that the sequences

generated by Algorithm . with λn := /(n + )a (a = ., , n ∈ N) converge to a point
in

⋂
i∈Ī Fix(T (i)). Meanwhile, Figure  shows that Algorithm . with λn := / (n ∈ N)

does not converge in
⋂

i∈Ī Fix(T (i)), and (Dn)n∈N in Algorithm . with λn := / (n ∈ N)
initially decreases. This is because the use of λ := / satisfies lim infn→∞ ‖xn –T (i)(xn)‖ ≤
M/ ≈  (i ∈ Ī) (see Theorem .).

Figure  plots the behavior of Fn for Algorithm . and shows that Algorithm . with
λn := /(n + ) (n ∈ N) is stable during the early iterations and converges to a solution to
problem (), as promised by Theorem .. This figure indicates that the (Fn)n∈N generated

Figure 1 Behavior of Dn for Algorithm 3.1 when
λn := 1/10, 1/103, 1/(n + 1)a (a = 0.5, 1).

Figure 2 Behavior of Fn for Algorithm 3.1 when
λn := 1/10, 1/103, 1/(n + 1)a (a = 0.5, 1).
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by Algorithm . with λ := / (n ∈ N) decreases slowly. Therefore, Figures  and , and
Theorem . show that Algorithm . with λn := /(n + ) (n ∈ N) converges to a solution
to problem ().

5 Conclusion
This paper discussed the problem of minimizing the sum of nondifferentiable, convex
functions over the intersection of the fixed point sets of firmly nonexpansive mappings in
a real Hilbert space. It presented a parallel algorithm for solving the problem. The parallel
algorithm does not use any proximity operators, in contrast to conventional parallel al-
gorithms. Moreover, the parallel algorithm can work in nonsmooth convex optimization
over constraint sets onto which projections cannot be always implemented, while the con-
ventional incremental subgradient method can only be applied when the constraint set is
simple in the sense that the projection onto it can easily be implemented. We studied its
convergence properties for the two step-size rules, a constant step size and a diminishing
step size. We showed that the algorithm with a small constant step size will approximate
a solution to the problem, while there exists a subsequence of the sequence generated by
the algorithm with a diminishing step size which weakly converges to a solution to the
problem. We also gave numerical examples to support the convergence analyses.
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