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A regularization algorithm with a computational error for treating accretive operators
is investigated. A strong convergence theorem for zero points of accretive operators is
established in a reflexive Banach space.

Keywords: accretive operator; fixed point; nonexpansive mapping; regularization
algorithm; zero point

1 Introduction
In this paper, we are concerned with the problem of finding zero points of a mapping
A : E → E∗ ; that is, finding a point x in the domain of A such that  ∈ Ax. The domain of a
mapping A is defined by the set {x ∈ E : Ax �= }. Many important problems have reformu-
lations which require finding zero points, for instance, evolution equations, complemen-
tarity problems, mini-max problems, variational inequalities and optimization problems.
It is well known that minimizing a convex function f can be reduced to finding zero points
of the subdifferential mapping A = ∂f . One of the most popular techniques for solving the
inclusion problem goes back to the work of Browder []. One of the basic ideas in the case
of a Hilbert space H is reducing the above inclusion problem to a fixed point problem of
the operator RA defined by RA = (I + A)–, which is called the classical resolvent of A. If
A has some monotonicity conditions, the classical resolvent of A is with full domain and
firmly nonexpansive, that is, ‖RAx – RAy‖ ≤ 〈RAx – RAy,x – y〉, ∀x, y ∈ H . The property
of the resolvent ensures that the Picard iterative algorithm xn+ = RAxn converges weakly
to a fixed point of RA, which is necessarily a zero point of A. Rockafellar introduced this
iteration method and called it the proximal point algorithm; for more detail, see [–]
and the references therein. Methods for finding zero points of monotone mappings in the
framework of Hilbert spaces are based on the good properties of the resolvent RA, but
these properties are not available in the framework of Banach spaces.
In this paper, we study a viscosity algorithm with a computational error. A strong con-

vergence theorem for zero points of accretive operators is established in a reflexive Banach
space. The organization of this paper is as follows. In Section , we provide some neces-
sary preliminaries. In Section , a strong convergence theorem is established in a reflexive
Banach space. Two applications of the main results are also discussed in this section.

2 Preliminaries
In what follows, we always assume that E is a Banach space with the dual E∗. Let UE =
{x ∈ E : ‖x‖ = }. E is said to be smooth or is said to have a Gâteaux differentiable norm if
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the limit limt→
‖x+ty‖–‖x‖

t exists for each x, y ∈ UE . E is said to have a uniformly Gâteaux
differentiable norm if for each y ∈ UE , the limit is attained uniformly for all x ∈ UE . E is
said to be uniformly smooth or is said to have a uniformly Fréchet differentiable norm if the
limit is attained uniformly for x, y ∈UE . Let 〈·, ·〉 denote the pairing between E and E∗. The
normalized duality mapping J : E → E∗ is defined by J(x) = {f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖},
∀x ∈ E. In the sequel, we use j to denote the single-valued normalized dualitymapping. It is
known that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping
j is single-valued and uniformly norm to weak∗ continuous on each bounded subset of E.
Let C be a nonempty closed convex subset of E. Let T : C → C be a mapping. In this

paper, we use F(T) to denote the set of fixed points of T . Recall that T is said to be
α-contractive if there exits a constant α ∈ (, ) such that ‖Tx – Ty‖ ≤ α‖x – y‖, ∀x, y ∈ C.
T is said to be nonexpansive if α = . T is said to be pseudocontractive if there exists some
j(x – y) ∈ J(x – y) such that 〈Tx – Ty, j(x – y)〉 ≤ ‖x – y‖, ∀x, y ∈ C.
Recall that a closed convex subset C of a Banach space E is said to have normal structure

if for each bounded closed convex subset K of C which contains at least two points, there
exists an element x ofK which is not a diametral point ofK , i.e., sup{‖x–y‖ : y ∈ K} < d(K ),
where d(K ) is the diameter ofK . LetD be a nonempty subset ofC. LetQ : C →D.Q is said
to be contraction ifQ =Q; sunny if for each x ∈ C and t ∈ (, ), we haveQ(tx+(– t)Qx) =
Qx; sunny nonexpansive retraction if Q is sunny, nonexpansive, and contraction. K is said
to be a nonexpansive retract of C if there exists a nonexpansive retraction from C onto D;
for more details, see [] and the references therein.
Let I denote the identity operator on E. An operator A⊂ E×E with domainD(A) = {z ∈

E : Az �= ∅} and range R(A) =
⋃{Az : z ∈ D(A)} is said to be accretive if for each xi ∈ D(A)

and yi ∈ Axi, i = , , there exists j(x – x) ∈ J(x – x) such that 〈y – y, j(x – x)〉 ≥ . An
accretive operator A is said to bem-accretive if R(I + rA) = E for all r > . In a real Hilbert
space, an operator A is m-accretive if and only if A is maximal monotone. In this paper,
we use A–() to denote the set of zero points of A. For an accretive operator A, we can
define a nonexpansive single-valued mapping Jr : R(I + rA) → D(A) by Jr = (I + rA)– for
each r > , which is called the resolvent of A.
One of classical methods of studying the problem  ∈ Ax, where A ⊂ E × E is an ac-

cretive operator, is the proximal point algorithm (PPA) which was initiated by Martinet
[] and further developed by Rockafellar []. It is known that PPA is only weakly conver-
gent; see Güler []. In many disciplines, including economics, image recovery, quantum
physics, and control theory, problems arise in infinite dimension spaces. In such prob-
lems, strong convergence (norm convergence) is often much more desirable than weak
convergence, for it translates the physically tangible property that the energy ‖xn – x‖ of
the error between the iterate xn and the solution x eventually becomes arbitrarily small.
The importance of strong convergence is also underlined in [], where a convex function f
is minimized via the proximal-point algorithm: it is shown that the rate of convergence of
the value sequence {f (xn)} is better when {xn} converges strongly than when it converges
weakly. Such properties have a direct impact when the process is executed directly in the
underlying infinite dimensional space.
Regularization methods recently have been investigated for treating zero points of ac-

cretive operators; see [–] and the references therein. In this paper, zero points of
m-accretive operators are investigated based on a viscosity iterative algorithmwith a com-
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putational error. A strong convergence theorem for zero points of m-accretive operators
is established in a reflexive Banach space.
In order to state our main results, we need the following lemmas.

Lemma . [] Let {xn} and {yn} be bounded sequences in a Banach space E. Let {βn}
be a sequence in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
(–βn)yn +βnxn, ∀n≥  and lim supn→∞(‖yn+ – yn‖–‖xn+ –xn‖)≤ . Then limn→∞ ‖yn –
xn‖ = .

Lemma . [] Let E be a real reflexive Banach space with the uniformly Gâteaux differ-
entiable norm and the normal structure, and let C be a nonempty closed convex subset of E.
Let T : C → C be a nonexpansive mapping with a fixed point, and let f : C → C be a fixed
contraction with the coefficient α ∈ (, ). Let {xt} be a sequence generated by the following
xt = tf (xt) + ( – t)Txt , where t ∈ (, ). Then {xt} converges strongly as t →  to a fixed
point x∗ of T , which is the unique solution in F(T) to the following variational inequality
〈f (x∗) – x∗, j(x∗ – p)〉 ≥ , ∀p ∈ F(T).

Lemma . [] Let E be a Banach space, and let A be an m-accretive operator. For λ > ,
μ > , and x ∈ E,we have Jλx = Jμ(μ

λ
x+(– μ

λ
)Jλx),where Jλ = (I +λA)– and Jμ = (I +μA)–.

Lemma . [] Let {an} be a sequence of nonnegative numbers satisfying the condition
an+ ≤ ( – tn)an + tnbn + cn, ∀n ≥ , where {tn} is a number sequence in (, ) such that
limn→∞ tn =  and

∑∞
n= tn = ∞, {bn} is a number sequence such that lim supn→∞ bn ≤ ,

and {cn} is a positive number sequence such that
∑∞

n= cn < ∞. Then limn→∞ an = .

3 Main results
Theorem . Let E be a real reflexive Banach space with the uniformly Gâteaux differen-
tiable norm, and let A be an m-accretive operator in E. Assume that C := D(A) is convex
and has the normal structure. Let f : C → C be a fixed α-contraction. Let {xn} be a sequence
generated in the following manner: x ∈ C and

xn+ = βnxn + ( – βn)Jrn
(
αnf (xn) + ( – αn)xn + en+

)
, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in E, {rn} is a
positive real number sequence, and Jrn = (I + rnA)–. Assume that A–() is not empty and
the above control sequences satisfy the following restrictions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞;

(b)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(c)

∑∞
n= ‖en‖ < ∞;

(d) rn ≥ r >  and limn→∞ |rn – rn+| = .
Then the sequence {xn} converges strongly to x̄ ∈ A–(), which is the unique solution to the
following variational inequality 〈f (x̄) – x̄, j(p – x̄)〉 ≤ , ∀p ∈ A–().

Proof Fixing p ∈ A–(), we find that

‖xn+ – p‖ ≤ βn‖xn – p‖ + ( – βn)
∥∥Jrn(αnf (xn) + ( – αn)xn + en+

)
– p

∥∥
≤ βn‖xn – p‖ + ( – βn)

(
αn

∥∥f (xn) – p
∥∥ + ( – αn)‖xn – p‖ + ‖en+‖

)
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≤ (
 – αn( – βn)( – α)

)‖xn – p‖ + αn( – βn)
∥∥f (p) – p

∥∥ + ‖en+‖

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – α

}
+ ‖en+‖

...

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – α

}
+

n+∑
i=

‖ei‖

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – α

}
+

∞∑
i=

‖ei‖ < ∞.

This proves that the sequence {xn} is bounded. Put yn = αnf (xn)+(–αn)xn+en+. It follows
that

‖yn+ – yn‖ ≤ αn
∥∥f (xn+) – f (xn)

∥∥ + |αn+ – αn|
∥∥f (xn) – xn

∥∥
+ ( – αn+)‖xn+ – xn‖ + ‖en+‖ + ‖en+‖

≤ ‖xn+ – xn‖ + |αn+ – αn|
∥∥f (xn) – xn

∥∥ + ‖en+‖ + ‖en+‖. (.)

In view of Lemma ., we find that

‖Jrn+yn+ – Jrnyn‖ =
∥∥∥∥Jrn

(
rn
rn+

yn+ +
(
 –

rn
rn+

)
Jrn+yn+

)
– Jrnyn

∥∥∥∥
≤

∥∥∥∥
(

rn
rn+

yn+ +
(
 –

rn
rn+

)
Jrn+yn+

)
– yn

∥∥∥∥
≤ ‖yn+ – yn‖ + rn+ – rn

r
M, (.)

whereM is an appropriate constant such thatM ≥ supn≥{‖Jrn+yn+ – yn+‖}. Substituting
(.) into (.), we find that

‖Jrn+yn+ – Jrnyn‖ – ‖xn+ – xn‖
≤ |αn+ – αn|

∥∥f (xn) – xn
∥∥ + ‖en+‖ + ‖en+‖ + rn+ – rn

r
M.

In view of the restrictions (a), (c) and (d), we find that

lim sup
n→∞

(‖Jrn+yn+ – Jrnyn‖ – ‖xn – xn+‖
) ≤ .

It follows from Lemma . that

lim
n→∞‖Jrnyn – xn‖ = . (.)

Notice that ‖yn – xn‖ ≤ αn‖f (xn) – xn‖ + ‖en+‖. It follows from the restrictions (a) and (c)
that

lim
n→∞‖yn – xn‖ = . (.)
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In view of ‖Jrnyn – yn‖ ≤ ‖Jrnyn – xn‖ + ‖xn – yn‖, we find from (.) and (.) that

lim
n→∞‖Jrnyn – yn‖ = . (.)

Take a fixed number s such that r > s > . It follows from Lemma . that

‖yn – Jsyn‖ ≤ ‖yn – Jrnyn‖ +
∥∥∥∥Js

(
s
rn
yn +

(
 –

s
rn

)
Jrnyn

)
– Jsyn

∥∥∥∥
≤ ‖yn – Jrnyn‖ +

∥∥∥∥
(
 –

s
rn

)
(Jrnyn – yn)

∥∥∥∥
≤ ‖yn – Jrnyn‖.

This implies from (.) that

lim
n→∞‖yn – Jsyn‖ = . (.)

Now, we are in a position to claim that lim supn→∞〈x̄ – f (x̄), j(yn – x̄)〉 ≤ , where x̄ =
limt→ xt , and xt solves the fixed point equation xt = tf (xt)+ (– t)Jsxt , ∀t ∈ (, ). It follows
that

‖xt – yn‖ ≤ ( – t)
(‖xt – yn‖ + ‖Jsyn – yn‖‖xt – yn‖

)
+ t

〈
f (xt) – xt , j(xt – yn)

〉
+ t‖xt – yn‖

≤ ‖xt – yn‖ + ‖Jsyn – yn‖‖xt – yn‖ + t
〈
f (xt) – xt , j(xt – yn)

〉
.

This implies that 〈xt – f (xt), j(xt – yn)〉 ≤ 
t ‖Jsyn – yn‖‖xt – yn‖, ∀t ∈ (, ). In view of (.),

we find that

lim sup
n→∞

〈
xt – f (xt), j(xt – yn)

〉 ≤ . (.)

Since xt → x̄, as t →  and the fact that j is strong to weak∗ uniformly continuous on
bounded subsets of E, we see that

∣∣〈f (x̄) – x̄, j(yn – x̄)
〉
–

〈
xt – f (xt), j(xt – yn)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, j(yn – x̄)

〉
–

〈
f (x̄) – x̄, j(yn – xt)

〉∣∣
+

∣∣〈f (x̄) – x̄, j(yn – xt)
〉
–

〈
xt – f (xt), j(xt – yn)

〉∣∣
≤ ∣∣〈f (x̄) – x̄, j(yn – x̄) – j(yn – xt)

〉∣∣ + ∣∣〈f (x̄) – x̄ + xt – f (xt), j(yn – xt)
〉∣∣

≤ ∥∥f (x̄) – x̄
∥∥∥∥j(yn – x̄) – j(yn – xt)

∥∥ +
∥∥f (x̄) – x̄ + xt – f (xt)

∥∥‖yn – xt‖
→  as t → .

Hence, for any ε > , there exists λ >  such that ∀t ∈ (,λ) the following inequality holds
〈f (x̄) – x̄, j(yn – x̄)〉 ≤ 〈xt – f (xt), j(xt – yn)〉 + ε. Taking lim supn→∞ in the above inequality,
we find that lim supn→∞〈f (x̄) – x̄, j(yn – x̄)〉 ≤ lim supn→∞〈xt – f (xt), j(xt – yn)〉 + ε. Since ε

is arbitrary, we obtain from (.) that lim supn→∞〈f (x̄) – x̄, j(yn – x̄)〉 ≤ .
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Finally, we prove that xn → x̄ as n→ ∞. Note that

‖yn – x̄‖ ≤ αn
〈
f (xn) – x̄, j(yn – x̄)

〉
+ ( – αn)‖xn – x̄‖ + ‖en+‖‖yn – x̄‖. (.)

On the other hand, we have

‖xn+ – x̄‖ ≤ βn
〈
xn – x̄, j(xn+ – x̄)

〉
+ ( – βn)

〈
Jrnyn – x̄, j(xn+ – x̄)

〉

≤ βn


(‖xn – x̄‖ + ‖xn+ – x̄‖) +  – βn


(‖yn – x̄‖ + ‖xn+ – x̄‖).

It follows from (.) that

‖xn+ – x̄‖ ≤ (
 – αn( – βn)

)‖xn – x̄‖ + αn( – βn)
〈
f (xn) – x̄, j(yn – x̄)

〉
+ ‖en+‖‖yn – x̄‖.

In view of Lemma ., we find the desired conclusion immediately. �

4 Applications
In this section, we give two applications of our main result in the framework of Hilbert
spaces.
First, we consider, in the framework of Hilbert spaces, solutions of a Ky Fan inequality,

which is known as an equilibrium problem in the terminology of Blum andOettli; see []
and [] and the references therein.
LetC be a nonempty closed and convex subset of aHilbert spaceH . Let F be a bifunction

ofC×C intoR, whereR denotes the set of real numbers. Recall the following equilibrium
problem:

Find x ∈ C such that F(x, y)≥ , ∀y ∈ C. (.)

To study equilibrium problem (.), wemay assume that F satisfies the following restric-
tions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, lim supt↓ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.
The following lemma can be found in [].

Lemma . Let C be a nonempty, closed, and convex subset of H and F : C ×C →R be a
bifunction satisfying (A)-(A). Then, for any s >  and x ∈ H , there exists z ∈ C such that
F(z, y) + 

s 〈y – z, z – x〉 ≥ , ∀y ∈ C. Further, define

Tsx =
{
z ∈ C : F(z, y) +


s
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
(.)

for all s >  and x ∈ H . Then () Ts is single-valued and firmly nonexpansive; () F(Ts) =
EP(F) is closed and convex.

http://www.fixedpointtheoryandapplications.com/content/2013/1/341
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Lemma . [] Let F be a bifunction from C ×C to R which satisfies (A)-(A), and let
AF be a multivalued mapping of H into itself defined by

AFx =

⎧⎨
⎩

{z ∈H : F(x, y) ≥ 〈y – x, z〉,∀y ∈ C}, x ∈ C,

∅, x /∈ C.
(.)

Then AF is a maximal monotone operator with domain D(AF ) ⊂ C, EP(F) = A–
F (), where

EP(F) stands for the solution set of (.), and

Tsx = (I + sAF )–x, ∀x ∈ H , s > ,

where Ts is defined as in (.).

Theorem . Let F : C × C → R be a bifunction satisfying (A)-(A). Let f : C → C be a
fixed α-contraction. Let {xn} be a sequence generated in the following manner: x ∈ C and

xn+ = βnxn + ( – βn)Trn
(
αnf (xn) + ( – αn)xn + en+

)
, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in H , {rn} is
a positive real number sequence, and Trn = (I + rnAF )–. Assume that EP(F) is not empty
and the above control sequences satisfy the restrictions (a), (b), (c) and (d) in Theorem ..
Then the sequence {xn} converges strongly to x̄ ∈ EP(F), which is the unique solution to the
following variational inequality 〈f (x̄) – x̄,p – x̄〉 ≤ , ∀p ∈ A–().

Next, we consider the problem of finding a minimizer of a proper convex lower semi-
continuous function.
For a proper lower semicontinuous convex function g :H → (–∞,∞], the subdifferen-

tial mapping ∂g of g is defined by

∂g(x) =
{
x∗ ∈ H : g(x) +

〈
y – x,x∗〉 ≤ g(y),∀y ∈H

}
, ∀x ∈H .

Rockafellar [] proved that ∂g is a maximal monotone operator. It is easy to verify that
 ∈ ∂g(v) if and only if g(v) =minx∈H g(x).

Theorem . Let g : H → (–∞, +∞] be a proper convex lower semicontinuous function
such that (∂g)–() is not empty.Let f :H →H bea κ-contraction,and let {xn} be a sequence
in H in the following process: x ∈H and

⎧⎨
⎩
yn = argminz∈H{g(z) + ‖z–αnf (xn)–(–αn)xn–en+‖

rn },
xn+ = βnxn + ( – βn)yn, ∀n≥ ,

where {αn} and {βn} are real number sequences in (, ), {en} is a sequence in E, and {rn} is a
positive real number sequence. Assume that the above control sequences satisfy the restric-
tions in Theorem ..Then the sequence {xn} converges strongly to x̄ ∈ (∂f )–(),which is the
unique solution to the following variational inequality 〈f (x̄)– x̄, j(p– x̄)〉 ≤ , ∀p ∈ (∂f )–().

http://www.fixedpointtheoryandapplications.com/content/2013/1/341
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Proof Since g :H → (–∞,∞] is a proper convex and lower semicontinuous function, we
see that subdifferential ∂g of g is maximal monotone. Note that

yn = argmin
z∈H

{
g(z) +

‖z – αnf (xn) – ( – αn)xn – en+‖
rn

}

is equivalent to

 ∈ ∂g(yn) +

rn

(
yn – αnf (xn) – ( – αn)xn – en+

)
.

It follows that

αnf (xn) + ( – αn)xn + en+ ∈ yn + rn∂g(yn).

Following the proof in Theorem ., we draw the desired conclusion immediately. �
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