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Abstract
In this paper, we first introduce a new Halpern-type iterative scheme to approximate
common fixed points of an infinite family of quasi-nonexpansive mappings and
obtain a strongly convergent iterative sequence to the common fixed points of these
mappings in a uniformly convex Banach space. We then apply our method to
approximate zeros of an infinite family of accretive operators and derive a strong
convergence theorem for these operators. It is important to state clearly that the
contribution of this paper in relation with the previous works (see, for example, Yao et
al. (Nonlinear Anal. 70:2332-2336, 2009)) is a technical method to establish a strong
convergence theorem of Halpern type for a wide class of quasi-nonexpansive
mappings. The method provides a positive answer to an old problem in fixed point
theory and applications. Our results improve and generalize many known results in
the current literature.
MSC: 47H10; 37C25
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1 Introduction
Throughout this paper, we denote the set of real numbers and the set of positive integers
byR andN, respectively. Let E be a Banach space with the norm ‖·‖ and the dual space E∗.
The modulus δ of convexity of E is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly in x, y ∈ SE , then
E is called uniformly smooth. The Banach space E is said to be strictly convex if ‖ x+y

 ‖ < 
whenever x, y ∈ SE and x �= y. It is well known that E is uniformly convex if and only if E∗ is
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uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only
if E∗ is smooth; for more details, see []. Let E be a Banach space with the norm ‖ · ‖ and
the dual space E∗. When {xn}n∈N is a sequence in E, we denote the strong convergence
of {xn}n∈N to x ∈ E by xn → x and the weak convergence by xn ⇀ x. For any sequence
{x∗

n}n∈N in E∗, we denote the strong convergence of {x∗
n}n∈N to x∗ ∈ E∗ by x∗

n → x∗, the
weak convergence by x∗

n ⇀ x∗ and theweak-star convergence by x∗
n ⇀∗ x∗. The normalized

duality mapping J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖,‖x‖ = ‖f ‖}, ∀x ∈ E.

Now,we define amapping ρ : [,∞)→ [,∞), themodulus of smoothness ofE, as follows:

ρ(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ E,‖x‖ = ,‖y‖ = t

}
.

It is well known that E is uniformly smooth if and only if limt→
ρ(t)
t = . Let q ∈ R be such

that  < q ≤ . Then a Banach space E is said to be q-uniformly smooth if there exists a
constant cq >  such that ρ(t)≤ cqtq for all t > . If a Banach space E admits a sequentially
continuous duality mapping J from the weak topology to weak-star topology, then J is
single-valued and also E is smooth; for more details, see [, ]. In this case, the normalized
duality mapping J is said to be weakly sequentially continuous, i.e., if {xn}n∈N ⊂ E is a
sequence with xn ⇀ x ∈ E, then J(xn) ⇀∗ J(x) [].
Let E be a (real) Banach space and C be a nonempty subset of E. Let T : C → E be a

mapping. We denote by F(T) the set of fixed points of T , i.e., F(T) = {x ∈ C : Tx = x}.
A mapping T : C → E is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.
A mapping T : C → E is said to be quasi-nonexpansive if F(T) �= ∅ and ‖Tx – y‖ ≤ ‖x – y‖
for all x ∈ C and y ∈ F(T).
In recent years, several types of iterative schemes have been constructed and proved in

order to get strong convergence results for nonexpansive mappings in various settings.
The concept of nonexpansivity plays an important role in the study of Halpern-type iter-
ation for finding fixed points of a mapping T : C → C. Recall that the one-step Halpern
iteration is given by the following formula:

xn+ = αnu + ( – αn)Txn, u ∈ C,x ∈ C. (.)

Here, {αn}n∈N is a real sequence in [, ] satisfying some appropriate conditions. A more
general iteration scheme of one-step Halpern iteration is two-step Halpern iteration given
by

⎧⎪⎨
⎪⎩
u ∈ C, x ∈ C chosen arbitrarily,
yn = ( – βn)xn + βnTxn,
xn+ = αnu + ( – αn)yn,

(.)

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. In partic-
ular, when all βn = , the Halpern iteration (.) becomes the standard Halpern iteration
(.). The construction of fixed points of nonexpansive mappings via Halpern’s algorithm
[] has been extensively investigated recently in the current literature (see, for example,
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[, ] and the references therein). Because of a simple construction, Halpern’s iterations
are widely used to approximate a solution of fixed points for nonexpansive mappings and
other classes of nonlinear mappings by many authors in different styles. In [], Lions ob-
tained a strong convergence result provided that the real sequence {αn}n∈N satisfies the
following conditions:

C: lim
n→∞αn = ; C:

∞∑
n=

αn =∞; C: lim
n→∞

αn+ – αn

α
n+

= .

In [], Reich extended the result of Halpern from Hilbert spaces to uniformly smooth
Banach spaces. However, both Halpern’s and Lion’s conditions imposed on the real se-
quence {αn}n∈N exclude the canonical choice αn = /n for all n ∈ N. In [], Wittmann
proved strong convergence of {xn}n∈N if {αn}n∈N satisfies the conditions C, C and

C:
∞∑
n=

|αn+ – αn| < ∞.

In [], Shioji andTakahashi extendedWittmann’s result fromHilbert spaces to real Banach
spaces with uniformly Gâteaux differentiable norms and in which each nonempty, closed,
convex and bounded subset has the fixed point property for nonexpansive mappings. In
[], Xu used another control condition C: limn→∞(αn+ – αn)/αn+ =  instead of the
conditions C or C and proved strong convergence of the sequence {xn}n∈N. In [], Cho,
Kang and Zhou pointed out that the control conditions C and C are not comparable, in
general. They proposed some examples which satisfy the conditions C, C, C, C and
C, and also presented the control condition C:

|αn+ – αn| ≤ o(αn+) + σn,

where
∑∞

n= σn < ∞. Recently, Suzuki [] introduced the following Halpern-type itera-
tion:

⎧⎪⎨
⎪⎩
u ∈ C, x ∈ C chosen arbitrarily,
yn = λxn + ( – λ)Txn,
xn+ = αnu + ( – αn)yn.

(.)

He obtained strong convergence results for the sequence {xn}n∈N generated by algorithm
(.) when only the conditions C and C are imposed on the sequence {xn}n∈N, see also
[]. Numerous results have been proved on Halpern’s iterations for nonexpansive map-
pings in Hilbert and Banach spaces (see, e.g., [–]). However, the following question in
its full statements remains unsolved.

Open question . Are the conditions C and C sufficient for the strong convergence of
the sequence {xn}n∈N generated by the algorithm (.) for all quasi-nonexpansivemappings
T : C → C, where C is a nonempty, closed and convex subset of a Banach space E?

The answer to this question is known to be negative for nonexpansive mappings in a
Hilbert space setting [].

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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Let E be a real Banach space, and letA : E → E be amapping. The effective domain ofA
is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax �= ∅}. The range ofA is denoted by R(A).
A multi-valued mapping A is said to be accretive if for all x, y ∈ E, there exists j ∈ J(x – y)
such that 〈x – y, j〉 ≥ , where J : E → E∗ is the duality mapping. An accretive operator
A is m-accretive if R(I + rA) = E for each r ≥ . Throughout this paper, we assume that
A : E → E is an accretive operator and has a zero. For an accretive operator A on E and
r > , we may define a single-valued operator Jr = (I + rA)– : E → dom(A), which is called
the resolvent of A for r > . Assume A– = {x ∈ E :  ∈ Ax}. It is known that A– = F(Jr)
for all r >  (for more details, see, for example, [, ]). The accretive operator has a close
connection with equations of evolution. Typical examples can be found in the heat, wave,
or Shrödinger equations. For some recent articles on the approximation of common zeros
of accretive operators, we refer the readers to [, –].
In this paper, we first introduce a new Halpern-type iterative scheme to approximate

common fixed points of an infinite family of quasi-nonexpansive mappings and obtain a
strongly convergent iterative sequence to the common fixed points of these mappings in
a uniformly convex Banach space. We then apply our method to approximate zeros of an
infinite family of accretive operators and derive a strong convergence theorem for these
operators. It is important to state clearly that the contribution of this paper in relation
with the previous works (see, for example, []) is a technical method to establish a strong
convergence theorem of Halpern type for a wide class of quasi-nonexpansive mappings.
Consequently, Open question . is answered in the affirmative by modifying (.) in a
Banach space setting. Our results improve and generalize many known results in the cur-
rent literature; see, for example, [, , , ].

2 Preliminaries
In this section, we collect some lemmas which will be used in the proofs for the main
results in the next section.
LetC be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth

Banach space E. Then, for any x ∈ E, there exists a unique point y ∈ C such that

‖y – x‖ ≤min
y∈C ‖y – x‖.

For more details, we refer the reader to []. The mapping PC : E → C defined by PCx = y
is called the metric projection from E onto C. Let x ∈ E and z ∈ C. Then it is well known
that z = PCx if and only if

〈
z – y, J(x – z)

〉 ≥  (.)

for all y ∈ C, where J is the normalized duality mapping of E; see [] for more details. It
is also well known that if PC is a metric projection from a real Hilbert space H onto a
nonempty, closed and convex subset C, then PC is nonexpansive, but, in a general Banach
space, this fact is not true; see [] for more details.
Let C and D be nonempty subsets of a real Banach space E with D ⊂ C. A mapping

QD : C →D is said to be sunny if

QD
(
QDx + t(x –QDx)

)
=QDx

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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for each x ∈ E and t ≥ . A mapping QD : C → D is said to be a retraction if QDx = x for
each x ∈ C. For more details, see [].
A Banach space E is said to have a weakly continuous duality mapping [] if there exists

a gauge function φ such that the duality mapping Jφ is single-valued and weak-to-weak∗

sequentially continuous, where the gauge function φ : [,∞) → [,∞) is a continuous
strictly increasing function with φ() =  and limt→∞ φ(t) = ∞ and the duality mapping
Jφ is defined by

Jφ(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,φ(‖x‖) = ‖f ‖}, ∀x ∈ E.

Let

�(t) =
∫ t


φ(τ )dτ , t ≥ .

Then �(kt)≤ kφ(t) for all  < k < .

Lemma . [] Let E be a real Banach space having a weakly sequentially continuous
duality mapping Jφ with a gauge function φ. Then

�
(‖x + y‖) ≤ �

(‖x‖) + 
〈
y, Jφ(x + y)

〉

for all x, y ∈ E. In particular, if Jφ = J , the normalized duality mapping of E, then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉

for all x, y ∈ E.

Lemma . [] Let E be a Banach space with a weakly sequentially continuous duality
mapping Jφ with a gauge function φ. Let C be a nonempty, closed and convex subset of E,
and let T : C → C be a nonexpansive mapping with F(T) �= ∅. Then, for each u ∈ C, there
exists x ∈ F(T) such that

〈
u – x, Jφ(y – x)

〉 ≤ , ∀y ∈ F(T).

Lemma . [, ] Let E be a reflexive Banach space and have a weakly continuous du-
ality map Jφ with a gauge function φ. Let C be a nonempty, closed and convex subset of E,
and let T : C → C be a nonexpansive mapping. Fix u ∈ C and t ∈ (, ). Let xt ∈ C be the
unique solution in C to the equation xt = tu + ( – t)Txt . Then T has a fixed point if and
only if {xt}t∈(,) remains bounded as t → +, and in this case, {xt}t∈(,) converges as t → +

strongly to a fixed point of T . If we define Q : C → F(T) by

Q(u) := lim
t→

xt , u ∈ C,

then Q(u) solves the variational inequality

〈
u –Q(u), Jφ

(
y –Q(u)

)〉 ≤ , u ∈ C, y ∈ F(T),

where Q is the sunny nonexpansive retraction from C onto F(T).
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Definition . Let C be a nonempty subset of a Banach space E and T : C → E be a
mapping. Then themapping T is said to be demiclosed at zero if, for any sequence {xn}n∈N
in C which converges weakly to z, and if ‖Txn – xn‖ →  as n→ ∞, then Tz = z.

Lemma . (Demiclosedness principle []) Let E be a reflexive Banach space, C be a
nonempty, closed and convex subset of E and T : C → E be a nonexpansive mapping. Sup-
pose that E admits a weakly sequentially continuous duality mapping Jφ with a gauge func-
tion φ. Then the mapping I – T is demiclosed on C, where I is the identity mapping, i.e., if
{xn}n∈N is a sequence in C that converges weakly to x and if {(I–T)xn}n∈N converges strongly
to y, then (I – T)x = y; in particular, if y = , then x ∈ F(T).

Lemma . [] Let E be a real Banach space, and let A be an m-accretive operator on E.
For r > , let Jr be the resolvent operator associated with A and r. Then

‖Jρx – Jσx‖ ≤ |ρ – σ |
ρ

‖x – Jρx‖

for all ρ,σ >  and x ∈ E.

Lemma . [] Let {sn}n∈N be a sequence of nonnegative real numbers satisfying the in-
equality

sn+ ≤ ( – γn)sn + γnδn, ∀n≥ ,

where {γn}n∈N and {δn}n∈N satisfy the conditions:

(i) {γn}n∈N ⊂ [, ] and
∑∞

n= γn =∞, or equivalently,
∏∞

n=( – γn) = ;
(ii) lim supn→∞ δn ≤ , or
(ii)′

∑∞
n= γnδn <∞. Then limn→∞ sn = .

Lemma . [] Let {an}n∈N be a sequence of real numbers such that there exists a subse-
quence {ni}i∈N of {n}n∈N such that ani < ani+ for all i ∈ N. Then there exists a subsequence
{mk}k∈N ⊂ N such thatmk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk+ and ak ≤ amk+.

In fact,mk =max{j ≤ k : aj < aj+}.

Lemma . [] Let E be a uniformly convex Banach space, r >  be a constant.Then there
exists a continuous, strictly increasing and convex function g : [, r)→ [,∞) such that

∥∥∥∥∥
∞∑
k=

αkxk

∥∥∥∥∥


≤
∞∑
k=

αk‖xk‖ – αiαjg
(‖xi – xj‖

)

for all i, j ∈N∪{}, xk ∈ Br := {z ∈ E : ‖z‖ ≤ r}, αk ∈ (, ) and k ∈N∪{}with∑∞
k= αk = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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3 Strong convergence theorems for quasi-nonexpansive mappings
In this section, we prove a strong convergence theorem of Halpern type to approximate
common fixed points of an infinite family of quasi-nonexpansive mappings in a uniformly
convex Banach space.

Theorem . Let E be a real uniformly convex Banach space with the normalized duality
mapping J . Let C be a nonempty, closed and convex subset of E, and let {Tj}j∈N be an infinite
family of quasi-nonexpansive mappings from C into itself such that F :=

⋂∞
j= F(Tj) �= ∅.As-

sume that for each j ∈ N, Tj – I is demiclosed at . Let {αn}n∈N, {βn,j}n∈N,j∈N∪{} be sequences
in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, +
∑∞

j= βn,j = , ∀n ∈N;
(d) lim infn→∞ βn,βn,j > , ∀j ∈N.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x,u ∈ C chosen arbitrarily,
yn = βn,xn +

∑∞
j= βn,jTjxn,

xn+ = αnu + ( – αn)yn.
(.)

Then the sequence {xn}n∈N defined in (.) converges strongly to PFu, where PF is the metric
projection from E onto F .

Proof We divide the proof into several steps.
We first note that F is closed and convex. Set z = PFu.
Step . We prove that the sequences {xn}n∈N, {yn}n∈N and {Tjxn}n∈N are bounded.
We first show that {xn}n∈N is bounded. Let p ∈ F be fixed. In view of Lemma ., there

exists a continuous, strictly increasing and convex function g : [,∞)→ [,∞) with g() =
 such that for any j ∈N,

‖yn – p‖ =

∥∥∥∥∥βn,xn +
∞∑
j=

βn,jTjxn – p

∥∥∥∥∥


≤ βn,‖xn – p‖ +
∞∑
j=

βn,j‖Tjxn – p‖ – βn,βn,jg
(‖xn – Tjxn‖

)

≤ βn,‖xn – p‖ +
∞∑
j=

βn,j‖xn – p‖ – βn,βn,jg
(‖xn – Tjxn‖

)

= ‖xn – p‖ – βn,βn,jg
(‖xn – Tjxn‖

)
≤ ‖xn – p‖. (.)

This implies that

‖xn+ – p‖ =
∥∥αnu + ( – αn)yn – p

∥∥ ≤ αn‖u – p‖ + ( – αn)‖yn – p‖
≤ αn‖u – p‖ + ( – αn)‖xn – p‖ ≤max

{‖u – p‖,‖xn – p‖}.

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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By induction, we obtain

‖xn+ – p‖ ≤max
{‖u – p‖,‖x – p‖}

for all n ∈ N. This implies that the sequence {‖xn – p‖}n∈N is bounded and hence the se-
quence {xn}n∈N is bounded. This, together with (.), implies that the sequences {yn}n∈N
and {Tjxn}n∈N are bounded too.
Step . We prove that for any n ∈N,

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn
〈
u – z, J(xn+ – z)

〉
. (.)

Let us show (.). For any n, j ∈ N, in view of (.), we obtain

‖yn – z‖ ≤ ‖xn – z‖ – βn,βn,jg
(‖xn – Tjxn‖

)
.

This implies that

‖xn+ – z‖ =
∥∥αnu + ( – αn)yn – z

∥∥ ≤ αn‖u – z‖ + ( – αn)‖yn – z‖

≤ αn‖u – z‖ + ( – αn)
[‖xn – z‖ – βn,βn,jg

(‖xn – Tjxn‖
)]
. (.)

LetM := sup{|‖u– z‖ – ‖xn – z‖| + βn,βn,jg(‖xn –Tjxn‖) : n, j ∈N}. It follows from (.)
that

βn,βn,jg
(‖xn – Tjxn‖

) ≤ ‖xn – z‖ – ‖xn+ – z‖ + αnM, ∀j ∈N. (.)

In view of Lemma . and (.), we obtain

‖xn+ – z‖ =
∥∥αnu + ( – αn)yn – z

∥∥

=
∥∥αn(u – z) + ( – αn)(yn – z)

∥∥

≤ ∥∥( – αn)(yn – z)
∥∥ + 

〈
αn(u – z), J(xn+ – z)

〉
= ( – αn)‖yn – z‖ + 

〈
αn(u – z), J(xn+ – z)

〉
≤ ( – αn)‖yn – z‖ + 

〈
αn(u – z), J(xn+ – z)

〉
= ( – αn)‖yn – z‖ + αn

〈
u – z, J(xn+ – z)

〉
.

Step . We prove that xn → z as n→ ∞.
We discuss the following two possible cases.
Case . Suppose that there exists n ∈N such that {‖xn – z‖}∞n=n is nonincreasing. Then

the sequence {‖xn – z‖}n∈N is convergent. Thus we have ‖xn – z‖ – ‖xn+ – z‖ →  as
n→ ∞. This, together with condition (d) and (.), implies that

lim
n→∞ g

(‖xn – Tjxn‖
)
= , ∀j ∈N.

From the properties of g , we conclude that

lim
n→∞‖xn – Tjxn‖ = , ∀j ∈N. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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On the other hand, we have

yn – xn =
∞∑
j=

βn,j(Tjxn – xn) and xn+ – yn = αn(u – yn).

This implies that

lim
n→∞‖yn – xn‖ =  and lim

n→∞‖xn+ – yn‖ = . (.)

By the triangle inequality, we conclude that

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖.

It follows from (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni+ ⇀

y ∈ C for all j ∈ N. Since Tj – I is demiclosed at  for each j ∈ N, we conclude that y ∈ F .
This, together with (.), implies that

lim sup
n→∞

〈
u – z, J(xn+ – z)

〉
= lim

i→∞
〈
u – z, J(xni+ – z)

〉

=
〈
u – z, J(y – z)

〉
=

〈
u – PFu, J(y – PFu)

〉
≤ . (.)

Thus we have the desired result by Lemma ..
Case . Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that

‖xni – z‖ < ‖xni+ – z‖

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk}k∈N ⊂ N

such that mk → ∞,

‖z – xmk‖ < ‖z – xmk+‖ and ‖z – xk‖ ≤ ‖xmk+ – û‖

for all k ∈N. This, together with (.), implies that

βmk ,βmk ,jg
(‖xmk – Tjxmk‖

) ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmkM ≤ αmkM

for all k ∈N. Then, by conditions (a) and (d), we get

lim
k→∞

g
(‖xmk – Tjxmk‖

)
= , ∀j ∈N.

From the properties of g , we conclude that

lim
k→∞

‖xmk – Tjxmk‖ = , ∀j ∈N.
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By the same argument as Case , we arrive at

lim sup
k→∞

〈
u – z, J(xmk – z)

〉
= lim sup

k→∞

〈
u – z, J(xmk+ – z)

〉 ≤ .

It follows from (.) that

‖xmk+ – z‖ ≤ ( – αmk )‖xmk – z‖ + αmk

〈
u – z, J(xmk – z)

〉
. (.)

Since ‖xmk – z‖ ≤ ‖xmk+ – z‖, we conclude that

αmk‖xmk – z‖ ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmk

〈
u – z, J(xmk – z)

〉
≤ αmk

〈
u – z, J(xmk – z)

〉
. (.)

In particular, since αmk > , we obtain

‖xmk – z‖ ≤ 〈
u – z, J(xmk – z)

〉
.

In view of (.), we deduce that

lim
k→∞

‖xmk – z‖ = .

This, together with (.), implies that

lim
k→∞

‖xmk+ – z‖ = .

On the other hand, we have ‖xk –z‖ ≤ ‖xmk+ –z‖ for all k ∈N, which implies that xmk → z
as k → ∞. Thus, we have xn → z as n → ∞, which completes the proof. �

Considering a single mapping as a special case, we can obtain the following corollary
directly, which extends and improves the main result of [].

Corollary . Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping J . Let C be a nonempty, closed and convex subset
of E, let T be a quasi-nonexpansive mapping from C into itself, and let F be the set of fixed
points of T . Assume that T – I is demiclosed at . Let {αn}n∈N, {βn}n∈N,j∈N∪{} be sequences
in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) lim infn→∞ βn( – βn) > .
Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x,u ∈ C chosen arbitrarily,
yn = βnxn + ( – βn)Txn,
xn+ = αnu + ( – αn)yn.

Then the sequence {xn}n∈N converges strongly to PFu,where PF is the metric projection from
E onto F .

http://www.fixedpointtheoryandapplications.com/content/2013/1/332


Pang and Naraghirad Fixed Point Theory and Applications 2013, 2013:332 Page 11 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/332

Remark . The main result of [] gave a strong convergence theorem to approximate
a fixed point of a nonexpansive mapping, while the main result of the present paper gives
a strong convergence theorem to approximate common fixed points of an infinite family
of quasi-nonexpansive mappings in a uniformly convex Banach space. We note that the
proof of Theorem . (lines -, where the authors used the nonexpansivity of the map-
ping T ) in [] is not valid in our discussion. We note also that the proof of Theorem 
(where the author used the strong nonexpansivity of the mapping T ) in [] is not valid
in our discussion. So our result extends and improves the corresponding results of [,
]. Corollary . also provides a positive answer to Open question . in a Banach space
setting.

4 Application (approximating zeroes of accretive operators)
In this section, we propose a Halpern-type iterative scheme for finding common zeros of
an infinite family of accretive operators in a uniformly convex Banach space and prove the
following strong convergence theorem.

Theorem . Let E be a real uniformly convex Banach space which admits the weakly
sequentially continuous duality mapping Jφ . Let {Aj}∞j= be an infinite family of accretive
operators satisfying the range condition, and let C be a nonempty, closed and convex subset
of E such that D(Aj) ⊂ C ⊂ ⋂

r> R(I + rAj) for each j ∈ N. Let rn >  and r >  be such that
limn→∞ rn = r, and let JAj

rn = (I + rnAj)– be the resolvent of A. Let {αn}n∈N, {βn,j}n∈N,j∈N∪{}
be sequences in [, ] satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, +
∑∞

j= βn,j = , ∀n ∈N;
(d) lim infn→∞ βn,βn,j > , ∀j ∈N.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x,u ∈ C chosen arbitrarily,
yn = βn,xn +

∑∞
j= βn,jJ

Aj
rn xn,

xn+ = αnu + ( – αn)yn.
(.)

If Z :=
⋂∞

j=A–
j () �= ∅, then the sequence {xn}n∈N defined in (.) converges strongly to QZu,

where QZ is the sunny nonexpansive retraction from E onto Z.

Proof We divide the proof into several steps.
We first note that Z is closed and convex. Set z =QZu.
Step . We prove that the sequences {xn}n∈N, {yn}n∈N and {JAj

rn xn}n∈N are bounded.
We first show that {xn}n∈N is bounded. Let p ∈ Z be fixed. In view of Lemma ., there

exists a continuous, strictly increasing and convex function g : [,∞)→ [,∞) with g() =
 such that for any j ∈N,

‖yn – p‖ =

∥∥∥∥∥βn,xn +
∞∑
j=

βn,jJ
Aj
rn xn – p

∥∥∥∥∥


≤ βn,‖xn – p‖ +
∞∑
j=

βn,j
∥∥JAj

rn xn – p
∥∥ – βn,βn,jg

(∥∥xn – JAj
rn xn

∥∥)

http://www.fixedpointtheoryandapplications.com/content/2013/1/332
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≤ βn,‖xn – p‖ +
∞∑
j=

βn,j‖xn – p‖ – βn,βn,jg
(∥∥xn – JAj

rn xn
∥∥)

= ‖xn – p‖ – βn,βn,jg
(∥∥xn – JAj

rn xn
∥∥)

≤ ‖xn – p‖. (.)

This implies that

‖xn+ – p‖ =
∥∥αnu + ( – αn)yn – p

∥∥ ≤ αn‖u – p‖ + ( – αn)‖yn – p‖
≤ αn‖u – p‖ + ( – αn)‖xn – p‖ ≤max

{‖u – p‖,‖xn – p‖}.
By induction, we obtain

‖xn+ – p‖ ≤max
{‖u – p‖,‖x – p‖}

for all n ∈ N. This implies that the sequence {‖xn – p‖}n∈N is bounded and hence the se-
quence {xn}n∈N is bounded. This, together with (.), implies that the sequences {yn}n∈N
and {JAj

rn xn}n∈N are bounded too.
Step . We prove that for any n ∈N,

‖xn+ – z‖ ≤ ( – αn)‖xn – z‖ + αn
〈
u – z, Jφ(xn+ – z)

〉
. (.)

Let us show (.). For any n, j ∈N, in view of (.), we obtain

‖yn – z‖ ≤ ‖xn – z‖ – βn,βn,jg
(∥∥xn – JAj

rn xn
∥∥)
.

This implies that

‖xn+ – z‖ =
∥∥αnu + ( – αn)yn – z

∥∥ ≤ αn‖u – z‖ + ( – αn)‖yn – z‖

≤ αn‖u – z‖ + ( – αn)
[‖xn – z‖ – βn,βn,jg

(∥∥xn – JAj
rn xn

∥∥)]
. (.)

LetM := sup{|‖u– z‖ – ‖xn – z‖|+βn,βn,jg(‖xn – JAj
rn xn‖) : n, j ∈N}. It follows from (.)

that

βn,βn,jg
(∥∥xn – JAj

rn xn
∥∥) ≤ ‖xn – z‖ – ‖xn+ – z‖ + αnM, ∀j ∈N. (.)

In view of Lemma . and (.), we obtain

‖xn+ – z‖ =
∥∥αnu + ( – αn)yn – z

∥∥

=
∥∥αn(u – z) + ( – αn)(yn – z)

∥∥

≤ ∥∥( – αn)(yn – z)
∥∥ + 

〈
αn(u – z), Jφ(xn+ – z)

〉
= ( – αn)‖yn – z‖ + 

〈
αn(u – z), Jφ(xn+ – z)

〉
≤ ( – αn)‖yn – z‖ + 

〈
αn(u – z), Jφ(xn+ – z)

〉
= ( – αn)‖yn – z‖ + αn

〈
u – z, Jφ(xn+ – z)

〉
.
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Step . We prove that xn → z as n→ ∞.
We discuss the following two possible cases.
Case . Suppose that there exists n ∈N such that {‖xn – z‖}∞n=n is nonincreasing. Then

the sequence {‖xn – z‖}n∈N is convergent. Thus we have ‖xn – z‖ – ‖xn+ – z‖ →  as
n→ ∞. This, together with condition (d) and (.), implies that

lim
n→∞ g

(∥∥xn – JAj
rn xn

∥∥)
= , ∀j ∈ N.

From the properties of g , we conclude that

lim
n→∞

∥∥xn – JAj
rn xn

∥∥ = , ∀j ∈N. (.)

On the other hand, we have

yn – xn =
∞∑
j=

βn,j
(
JAj
rn xn – xn

)
and xn+ – yn = αn(u – yn).

This implies that

lim
n→∞‖yn – xn‖ =  and lim

n→∞‖xn+ – yn‖ = . (.)

By the triangle inequality, we conclude that

‖xn+ – xn‖ ≤ ‖xn+ – yn‖ + ‖yn – xn‖.

It follows from (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

Exploiting Lemma . and (.), we obtain

∥∥xn – JAj
r xn

∥∥ ≤ ∥∥xn – JAj
rn xn

∥∥ +
∥∥JAj

rn xn – JAj
r xn

∥∥ ≤ ∥∥xn – JAj
rn xn

∥∥ +
|rn – r|
rn

∥∥xn – JAj
rn xn

∥∥.

This implies that

lim
n→∞

∥∥xn – JAj
r xn

∥∥ = , ∀j ∈N. (.)

Since {xn}n∈N is bounded, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni+ ⇀

y ∈ F(JAj
r ) for all j ∈N. This, together with Lemma ., implies that

lim sup
n→∞

〈
u – z, Jφ(xn+ – z)

〉
= lim

i→∞
〈
u – z, Jφ(xni+ – z)

〉

=
〈
u – z, Jφ(y – z)

〉
≤ . (.)

Thus we have the desired result by Lemma ..
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Case . Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that

‖xni – z‖ < ‖xni+ – z‖

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk}k∈N ⊂ N

such that mk → ∞,

‖z – xmk‖ < ‖z – xmk+‖ and ‖z – xk‖ ≤ ‖xmk+ – û‖

for all k ∈N. This, together with (.), implies that

βmk ,βmk ,jg
(∥∥xmk – JAj

r xmk

∥∥) ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmkM ≤ αmkM

for all k ∈N. Then, by conditions (a) and (c), we get

lim
k→∞

g
(∥∥xmk – JAj

r xmk

∥∥)
= , ∀j ∈N.

From the properties of g , we conclude that

lim
k→∞

∥∥xmk – JAj
r xmk

∥∥ = , ∀j ∈N.

By the same argument as Case , we arrive at

lim sup
k→∞

〈
u – z, Jφ(xmk – z)

〉
= lim sup

k→∞

〈
u – z, Jφ(xmk+ – z)

〉 ≤ .

It follows from (.) that

‖xmk+ – z‖ ≤ ( – αmk )‖xmk – z‖ + αmk

〈
u – z, Jφ(xmk – z)

〉
. (.)

Since ‖xmk – z‖ ≤ ‖xmk+ – z‖, we have that

αmk‖xmk – z‖ ≤ ‖xmk – z‖ – ‖xmk+ – z‖ + αmk

〈
u – z, Jφ(xmk – z)

〉
≤ αmk

〈
u – z, Jφ(xmk – z)

〉
. (.)

In particular, since αmk > , we obtain

‖xmk – z‖ ≤ 〈
u – z, Jφ(xmk – z)

〉
.

In view of (.), we deduce that

lim
k→∞

‖xmk – z‖ = .

This, together with (.), implies that

lim
k→∞

‖xmk+ – z‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/332


Pang and Naraghirad Fixed Point Theory and Applications 2013, 2013:332 Page 15 of 16
http://www.fixedpointtheoryandapplications.com/content/2013/1/332

On the other hand, we have ‖xk –z‖ ≤ ‖xmk+ –z‖ for all k ∈N, which implies that xmk → z
as k → ∞. Thus, we have xn → z as n → ∞, which completes the proof. �

Theorem . Let E be a real uniformly convex Banach space having a Gâteaux differ-
entiable norm. Let {Aj}∞j= be an infinite family of accretive operators satisfying the range
condition, and let C be a nonempty, closed and convex subset of E such that D(Aj) ⊂ C ⊂⋂

r> R(I + rAj) for each j ∈ N. Let rn >  and r >  be such that limn→∞ rn = r, and let
JAj
rn = (I + rnAj)– be the resolvent of A. Let {αn}n∈N, {βn,j}n∈N,j∈N∪{} be sequences in [, ]
satisfying the following control conditions:
(a) limn→∞ αn = ;
(b)

∑∞
n= αn =∞;

(c) βn, +
∑∞

j= βn,j = , ∀n ∈N;
(d) lim infn→∞ βn,βn,j > , ∀j ∈N.

Let {xn}n∈N be a sequence generated by

⎧⎪⎨
⎪⎩
x ∈ C chosen arbitrarily,
yn = βn,xn +

∑∞
j= βn,jJ

Aj
rn xn,

xn+ = αnu + ( – αn)yn.

If Z :=
⋂∞

j=A–
j () �= ∅, then the sequence {xn}n∈N converges strongly to QFu,where QF is the

sunny nonexpansive retraction from E onto Z.

Remark . The main results of [, ] gave strong convergence theorems for finding
common zeros of an accretive operator, while the main results of the present paper (The-
orems . and .) give strong convergence theorems for finding common zeros of an in-
finite family of accretive operators. So our results extend and improve the corresponding
results of [, ].

Remark . The two-step Halpern iteration process is a generalization of the one-step
Halpern iteration process. It provides more flexibility in defining the algorithm parame-
ters, which is important from the numerical implementation perspective.
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