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Abstract
In this paper, we first introduce the concepts of Bregman nonexpansive retract and
Bregman one-local retract and then use these concepts to establish the existence of
common fixed points for Banach operator pairs in the framework of reflexive Banach
spaces. No compactness assumption is imposed either on C or on T , where C is a
closed and convex subset of a reflexive Banach space E and T : C → C is a Bregman
nonexpansive mapping. We also establish the well-known De Marr theorem for a
Banach operator family of Bregman nonexpansive mappings.
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1 Introduction
This paper is motivated by the recent papers [–]. In [] the authors study different ques-
tions related to common fixed points of Banach operator pairs in hyperconvex spaces. In
[] the authors introduced the concept of NR-maps and then they used this concept to
establish the existence of common fixed points for Banach operator pairs in the context of
uniformly convex geodesic metric spaces. In our present work, using Bregman functions,
we propose to consider similar questions on reflexive Banach spaces under the mildest
weaker conditionswemay impose.More precisely, we first introduce the concepts of Breg-
man NR-map and Bregman one-local retract and then use these concepts to establish the
existence of common fixed points for Banach operator pairs in reflexive Banach spaces.
No compactness assumption is imposed either on C or on T , where C is a closed and
convex subset of a reflexive Banach space E and T : C → C is a Bregman nonexpansive
mapping. For a recent survey on the existence of fixed points in geodesic spaces, we refer
the readers to [, ].
The celebrated result on the existence of a common fixed point for a nonexpansive com-

mutative family was first established byDeMarr [] under the assumption thatC is a com-
pact convex subset of a normed space X. In , Browder [] obtained the corresponding
result under the assumption that C is a bounded, closed and convex subset of a uniformly
convex Banach space X. In , Khamsi et al. [] established the above mentioned re-
sults for a finite as well as an arbitrary commutative family of maps in hyperconvex metric
spaces. Recently, Espìnola and Hussain [] proved De Marr’s theorem in uniformly con-
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vex metric spaces of type (T). More recently, Hussain et al. [] extended De Marr’s result
to the family of symmetric Banach operator pairs in hyperconvex metric spaces (see also
[–]).
Throughout this paper, we denote the set of real numbers and the set of positive integers

by R and N, respectively. Let E be a real Banach space and let C be a nonempty subset
of E. Let T : C → E be a mapping. We denote by F(T) the set of fixed points of T , i.e.,
F(T) = {x ∈ C : Tx = x}.
Let E be a Banach space with the norm ‖ · ‖ and the dual space E∗. For any x ∈ E, we

denote the value of x∗ ∈ E∗ at x by 〈x,x∗〉. When {xn}n∈N is a sequence in E, we denote the
strong convergence of {xn}n∈N to x ∈ E by xn → x and the weak convergence by xn ⇀ x.
The modulus δ of the convexity of E is denoted by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly in x, y ∈ SE , then
E is called uniformly smooth. The Banach space E is said to be strictly convex if ‖ x+y

 ‖ < 
whenever x, y ∈ SE and x 
= y. It is well known that E is uniformly convex if and only if E∗

is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and
only if E∗ is smooth; for more details, see [, ].
Let E be a smooth, strictly convex and reflexive Banach space, and let J be the normalized

duality mapping of E. Let C be a nonempty closed convex subset of E. The generalized
projection �C from E onto C is denoted by

�C(x) = argmin
y∈C

φ(y,x),

where φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖. If E =H is a Hilbert space, then φ(x, y) = ‖x– y‖ for
all x, y ∈H .
Let E be a Banach space with the norm ‖ · ‖ and the dual space E∗. A function g : E →

(–∞, +∞] is said to be proper if the domain dom g = {x ∈ E : g(x) < ∞} is nonempty. It is
also called lower semicontinuous if {x ∈ E : g(x)≤ r} is closed for all r ∈R. We say that g is
upper semicontinuous if {x ∈ E : g(x) ≥ r} is closed for all r ∈ R. The function g is said to
be convex if

g
(
αx + ( – α)y

) ≤ αg(x) + ( – α)g(y) (.)

for all x, y ∈ E and α ∈ (, ). It is also said to be strictly convex if the strict inequality holds
in (.) for all x, y ∈ dom g with x 
= y and α ∈ (, ).
For any convex function g : E → (–∞, +∞], we denote the domain of g by dom g = {x ∈

E : g(x) < ∞}. For any x ∈ int dom g and any y ∈ E, we denote by go(x, y) the right-hand
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derivative of g at x in the direction y, that is,

go(x, y) = lim
t↓

g(x + ty) – g(x)
t

. (.)

The function g is said to be Gâteaux differentiable at x if limt→
g(x+ty)–g(x)

t exists for any y.
In this case, go(x, y) coincides with ∇g(x), the value of the gradient ∇g of g at x (see, for
example, [, p.] or [, p.]). A convex function g : E →R is said to beGâteaux differ-
entiable if it is Gâteaux differentiable everywhere. Let g : E →R be a convex and Gâteaux
differentiable function. Then the Bregman distance [, ] corresponding to g is the func-
tion Dg : E × E →R defined by

Dg(x, y) = g(x) – g(y) –
〈
x – y,∇g(y)

〉
, ∀x, y ∈ E. (.)

It is clear that Dg(x, y) ≥  for all x, y ∈ E. In the case when E is a smooth Banach space,
setting g(x) = ‖x‖ for all x ∈ E, we have ∇g(x) = Jx for all x ∈ E, and hence

Dg(x, y) = ‖x‖ – ‖y‖ – 〈
x – y,∇g(y)

〉
= ‖x‖ – ‖y‖ – 〈x – y, Jy〉
= ‖x‖ – ‖y‖ – 〈x, Jy〉 + ‖y‖

= ‖x‖ – 〈x, Jy〉 + ‖y‖

= φ(x, y)

for all x, y ∈ E.
The theory of fixed points with respect to Bregman distances have been studied in the

last ten years andmuch intensively in the last four years. In [], Bauschke and Combettes
introduced an iterative method to construct the Bregman projection of a point onto a
countable intersection of closed and convex sets in reflexive Banach spaces. They proved
strong convergence theorem of the sequence produced by their method; for more detail,
see [, Theorem.]. For some recent articles on the existence of fixed points for Bregman
nonexpansive type mappings, we refer the readers to [–].
Let E be a Banach space, and let g : E → R be a convex and Gâteaux differentiable func-

tion. Let C be a nonempty and closed convex subset of E. A mapping T : C → E is called
nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

The mapping T : C → E is called Bregman nonexpansive if

Dg(Tx,Ty) ≤ Dg(x, y), ∀x, y ∈ C. (.)

Let us give an example of a Bregman nonexpansive mapping which is not a nonexpansive
mapping (see also []).

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Example . Let g :R →R be a function defined by

g(x) = x, ∀x ∈R.

We define a mapping T : [, .]→ [, .] by

T(x) = x, ∀x ∈ [, .].

Then T is not a nonexpansive mapping in the sense of (.), but it is a Bregman nonex-
pansive mapping relative to Dg in the sense of (.). Indeed, taking x = 

 and y = 
 , we see

that T is not a nonexpansive mapping in the sense of (.). Now, we show that

Dg(Tx,Ty) ≤ Dg(x, y), ∀x, y ∈ [, .].

Let x ∈ [, .] be fixed. We define a mapping f : [, .]→ [, .] by

f (y) =Dg(Tx,Ty) –Dg(x, y), ∀y ∈ [, .].

Then

f (y) = g(Tx) – g(Ty) –
〈
Tx – Ty,∇g(Ty)

〉
–

[
g(x) – g(y) –

〈
x – y,∇(y)

〉]
= g(Tx) – g(Ty) –

〈
Tx – Ty, g ′(Ty)

〉
–

[
g(x) – g(y) –

〈
x – y, g ′(y)

〉]
= x – xy + y – x – y + xy.

This implies that

f ′(y) = –xy + y – y + xy

= y
[
–xy + y – y + x

]
= y

[
y

(
y – x

)
– (y – x)

]
= y(y – x)

[
y(y + x) – 

]
.

Since x and y are in [, .], we obtain

y(y + x) –  < (.)(. + .) –  < .

Therefore, f ′(y) ≥  if y≤ x and f ′(y) ≤  if y > x.Moreover, f (y) =  if x = y. Hence, f (y) ≤ 
for all y ∈ [, .], which implies that

Dg(Tx,Ty) ≤ Dg(x, y), ∀x, y ∈ [, .].

In this paper we establish some common fixed point results for the Banach operator and
symmetric Banach operator pairs in reflexive Banach spaces for Bregman nonexpansive
mappings that generalize the concept of nonexpansivity. Our results improve and gener-
alize many known results in the current literature; see, for example, [].
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2 Basic definitions and results
Let E be a real Banach space. Let g : E → R be a convex and Gâteaux differentiable func-
tion. For any x ∈ E and r > , we define the Bregman ball centered at x with radius r by

B(x, r) =
{
y ∈ E :Dg(x, y) < r

}
.

The Bregman closed ball centered at x with radius r is denoted by

B̄(x, r) =
{
y ∈ E :Dg(x, y)≤ r

}
.

Recall that a subset C of a real Banach space E is Bregman admissible if it is a nonempty
intersection of Bregman closed balls. The class of all Bregman admissible subsets of C is
denoted by BA(C).

Remark . Let E be a real Banach space. Let g : E → R be a continuous, convex and
Gâteaux differentiable function. Then, for any x ∈ E and r > , any Bregman closed ball
centered at x with radius r is τ (Dg) closed, where τ (Dg) is the topology induced by Dg

on E. Indeed, suppose {yn}n∈N ⊂ B̄(x, r) is a sequence such that yn → y ∈ E as n → ∞.
Since g is continuous, so we have g(yn) → g(y). This, together with the definition of the
Bregman distance (see (.)), implies that

lim
n→∞

∣∣Dg(x, yn) –Dg(x, y)
∣∣ = .

Thus we have Dg(x, y) ≤ r. We refer the readers to see some details on quasipseudometric
concept in [].

At this point we introduce some notation which will be used throughout the remainder
of this work. For a subset A of E, we set

Brx(A) = sup
{
Dg(x, y) : y ∈ A

}
, x ∈ E;

BR(A) = inf
{
Brx(A) : x ∈ A

}
;

B-diam(A) = sup
{
Dg(x, y) : x, y ∈ A

}
;

BCA(A) =
{
x ∈ A : Brx(A) = BR(A)

}
;

cov(A) = ∩{B : B is a Bregman ball and B ⊇ A}.

B-diam(A) is called the Bregman diameter of A, BR(A) is called the Bregman Chebyshev
radius of A, BCA(A) is called the Bregman Chebyshev center of A and cov(A) is called the
cover of A.

Definition . Let F be a convexity structure on E.
(i) We will say that F is compact if any family (Aα)α∈	 of elements of F has a

nonempty intersection provided
⋂

α∈F Aα 
= ∅ for any finite subset F ⊂ 	;
(ii) We will say that F is normal if for any A ∈F , not reduced to one point, we have

BR(A) < B-diam(A).

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Definition . The ordered pair (S,T) of two self-maps of a closed and convex subset C
of a Banach space E is called a Banach operator pair if the set Fix(T) is S-invariant, namely
S(Fix(T))⊆ Fix(T). The ordered pair (S,T) is called nontrivially a Banach operator pair if
Fix(T) is not empty and (S,T) is a Banach operator pair.

Obviously, a commuting pair (S,T) is a Banach operator pair but not conversely in gen-
eral; see [–, –].
Let A : E → E∗ be a set-valued mapping. We define the domain and range of A by

domA = {x ∈ E : Ax 
= ∅} and ranA =
⋃

x∈E Ax, respectively. The graph of A is denoted by
G(A) = {(x,x∗) ∈ E × E∗ : x∗ ∈ Ax}. The mapping A ⊂ E × E∗ is said to bemonotone [] if
〈x–y,x∗–y∗〉 ≥ whenever (x,x∗), (y, y∗) ∈ A. It is also said to bemaximalmonotone [] if
its graph is not contained in the graph of any other monotone operator on E. If A⊂ E×E∗

is maximal monotone, then we can show that the set A– = {z ∈ E :  ∈ Az} is closed and
convex. For a proper, lower semicontinuous and convex function g : E → (–∞, +∞], the
subdifferential ∂g of g is defined by

∂g(x) =
{
x∗ ∈ E∗ : g(x) +

〈
y – x,x∗〉 ≤ g(y),∀y ∈ E

}
(.)

for all x ∈ E. It is well known that ∂g ⊂ E × E∗ is maximal monotone [, ]. For any
proper, lower semicontinuous and convex function g : E → (–∞, +∞], the conjugate func-
tion g∗ of g is defined by

g∗(x∗) = sup
x∈E

{〈
x,x∗〉 – g(x)

}

for all x∗ ∈ E∗. It is well known that g(x) + g∗(x∗) ≥ 〈x,x∗〉 for all (x,x∗) ∈ E × E∗. It is also
known that (x,x∗) ∈ ∂g is equivalent to

g(x) + g∗(x∗) = 〈
x,x∗〉. (.)

We also know that if g : E → (–∞, +∞] is a proper, lower semicontinuous and convex
function, then g∗ : E∗ → (–∞, +∞] is a proper, weak∗ lower semicontinuous and convex
function; see [] for more details on convex analysis. Let g : E →R be a convex function.
The function g is also said to be Fréchet differentiable at x ∈ E (see, for example, [, p.]
or [, p.]) if for all ε > , there exists δ >  such that ‖y – x‖ ≤ δ implies that

∣∣g(y) – g(x) –
〈
y – x,∇g(x)

〉∣∣ ≤ ε‖y – x‖.

A convex function g : E → R is said to be Fréchet differentiable if it is Fréchet differ-
entiable everywhere. It is well known that if a continuous convex function g : E → R

is Gâteaux differentiable, then ∇g is norm-to-weak∗ continuous (see, for example, [,
Proposition ..]). Also, it is known that if g is Fréchet differentiable, then∇g is norm-to-
norm continuous (see, [, p.]). The mapping ∇g is said to beweakly sequentially con-
tinuous if xn ⇀ x implies that ∇g(xn)⇀∗ ∇g(x) (for more details, see [, Theorem ..]
or [, p.]). The function g is said to be strongly coercive if

lim‖xn‖→∞
g(xn)
‖xn‖ = ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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It is also said to be bounded on bounded subsets if g(U) is bounded for each bounded subset
U of E.

Remark . Let E be a real Banach space. Let g : E → R be a Gâteaux differentiable
function which is bounded on bounded subsets. Let A be a bounded subset of E. Then
B-diam(A) = sup{Dg(x, y) : x, y ∈ A} < ∞. Indeed, the function g is bounded on bounded
subsets of E and, thus, ∇g is also bounded on bounded subsets of E∗ (see, for example,
[, Proposition ..] for more details). This implies that there exist positive real num-
bersM,M andM such that

sup
{∣∣g(x)∣∣ : x ∈ A

} ≤ M, sup
{‖x‖ : x ∈ A

} ≤ M

and

sup
{∥∥∇g(z)

∥∥ : z ∈ A
} ≤ M.

It follows that for any x, y ∈ A,

Dg(x, y) = g(x) – g(y) –
〈
x – y,∇g(y)

〉
≤ ∣∣g(x)∣∣ + ∣∣g(y)∣∣ + ‖x – y‖∥∥∇g(y)

∥∥
≤ M + MM.

Therefore, B-diam(A) = sup{Dg(x, y) : x, y ∈ A} < ∞.

The following definition is slightly different from that in Butnariu and Iusem [].

Definition . [] Let E be a Banach space. The function g : E → R is said to be a Breg-
man function if the following conditions are satisfied:
() g is continuous, strictly convex and Gâteaux differentiable;
() the set {y ∈ E :Dg(x, y) ≤ r} is bounded for all x ∈ E and r > .

The following lemma follows from Butnariu and Iusem [] and Zălinscu [].

Lemma . Let E be a reflexive Banach space and let g : E → R be a strongly coercive
Bregman function. Then
() ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;
() 〈x – y,∇g(x) –∇g(y)〉 =  if and only if x = y;
() {x ∈ E :Dg(x, y)≤ r} is bounded for all y ∈ E and r > ;
() dom g∗ = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)–.

Let E be a Banach space and let C be a nonempty and convex subset of E. Let g : E →R

be a convex and Gâteaux differentiable function. Then we know from [] that for x ∈ E
and x ∈ C, Dg(x,x) =miny∈C Dg(y,x) if and only if

〈
y – x,∇g(x) –∇g(x)

〉 ≤ , ∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Further, if C is a nonempty, closed and convex subset of a reflexive Banach space E and
g : E → R is a strongly coercive Bregman function, then for each x ∈ E, there exists a
unique x ∈ C such that

Dg(x,x) =min
y∈C Dg(y,x).

The Bregman projection projgC from E onto C is defined by projgC(x) = x for all x ∈ E. It is
also well known that projgC has the following property:

Dg
(
y,projgC x

)
+Dg

(
projgC x,x

) ≤ Dg(y,x) (.)

for all y ∈ C and x ∈ E (see [] for more details).
Let E be a Banach space and Br := {z ∈ E : ‖z‖ ≤ r} for all r > . Then a function g : E →R

is said to be uniformly convex on bounded subsets ([, pp.-]) if ρr(t) >  for all
r, t > , where ρr : [, +∞) → [,∞] is defined by

ρr(t) = inf
x,y∈Br ,‖x–y‖=t,α∈(,)

αg(x) + ( – α)g(y) – g(αx + ( – α)y)
α( – α)

for all t ≥ . The function ρr is called the gage of uniform convexity of g . The function g
is also said to be uniformly smooth on bounded subsets ([, pp.-]) if limt↓ σr(t)

t = 
for all r > , where σr : [, +∞)→ [,∞] is defined by

σr(t) = sup
x∈Br ,y∈SE ,α∈(,)

αg(x + ( – α)ty) + ( – α)g(x – αty) – g(x)
α( – α)

for all t ≥ .
The function g is said to be uniformly convex if the function δg : [, +∞) → [, +∞],

defined by

δg(t) := sup

{


g(x) +



g(y) – g

(
x + y


)
: ‖y – x‖ = t

}
,

satisfies that limt↓ σr (t)
t = . Let g : E → (–∞, +∞] be a convex and Gâteaux differen-

tiable function. Recall that, in view of [, Section ., p.], the function g is called totally
convex at a point x ∈ int dom g if its modulus of total convexity at x, that is, the function
vg : int dom g × [, +∞) → [, +∞) defined by

vg(x, t) := inf
{
Dg(y,x) : y ∈ int dom g,‖y – x‖ = t

}
,

is positive whenever t > . The function g is called totally convex when it is totally convex
at every point x ∈ int dom g . Moreover, the function g is called totally convex on bounded
subsets if vg(x, t) >  for any bounded subset X of E and for any t > , where the modulus
of total convexity of the function g on the set X is the function vg : int dom g × [, +∞) →
[, +∞) defined by

vg(X, t) := inf
{
vg(x, t) : x ∈ X ∩ int dom g

}
.

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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It is well known that any uniformly convex function is totally convex, but the converse is
not true in general (see [, Section ., p.]).
It is also well known that g is totally convex on bounded sets if and only if the function

g is uniformly convex on bounded sets (see [, Theorem ., p.]).
Examples of totally convex functions can be found, for instance, in [, ].
Let E be a Banach space and let g : E →R be a convex and Gâteaux differentiable func-

tion. Then the Bregman distance [, ] does not satisfy the well-known properties of a
metric, but it does have the following important property, which is called the three point
identity []:

Dg(x, z) =Dg(x, y) +Dg(y, z) +
〈
x – y,∇g(y) –∇g(z)

〉
, ∀x, y, z ∈ E. (.)

In particular, it can be easily seen that

Dg(x, y) = –Dg(y,x) +
〈
x – y,∇g(x) –∇g(y)

〉
, ∀x, y ∈ E. (.)

Indeed, by letting z = x in (.) and taking into account thatDg(x,x) = , we get the desired
result.
We will need the following important result; for the proof, we refer to ([, p.]).

Lemma. Let E be aBanach space and let g : E →R be aGâteaux differentiable function
which is uniformly convex on bounded sets. Let {xn}n∈N and {yn}n∈N be bounded sequences
in E. Then the following assertions are equivalent:
() limn→∞ Dg(xn, yn) = ;
() limn→∞ ‖xn – yn‖ = .

Remark . Let E be a Banach space and let g : E → R be a convex and Gâteaux differ-
entiable function. Let C be a closed and convex subset of E. Then, in view of Lemma .,
any Bregman nonexpansive mapping T : C → C is continuous.

Let l∞ denote the Banach space of bounded real sequences with the supremum norm. It
is well known that there exists a bounded linear functionalμ on l∞ such that the following
three conditions hold:
() If {tn}n∈N ∈ l∞ and tn ≥  for every n ∈N, then μ(tn) ≥ ;
() If tn =  for every n ∈N, then μ(tn) = ;
() μ({tn+}) = μ({tn}) for all {tn}n∈N ∈ l∞.

Such a functional μ is called a Banach limit and the value of μ at {tn}n∈N ∈ l∞ is denoted
by μntn (see, for example, []).

3 Common fixed points for Banach operator pairs
Let E be a Banach space and let g : E →R be a convex andGâteaux differentiable function.
Let C be a closed and convex subset of a real Banach space E. A mapping T : C → E is said
to be Bregman quasi-nonexpansive [] if F(T) 
= ∅ and

Dg(p,Tx) ≤ Dg(p,x), ∀x ∈ C,p ∈ F(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Let C and D be nonempty subsets of a real Banach space E with D ⊂ C. A mapping RD :
C →D is said to be sunny if

RD
(
RDx + t(x – RDx)

)
= RDx

for each x ∈ E and t ≥ . A mapping RD : C → D is said to be a retraction if RDx = x for
each x ∈ C.
The following result was proved in [].

Lemma . Let E be a reflexive Banach space and let g : E → R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E. Let T : C → E be a Bregman quasi-nonexpansive mapping. Then F(T) is closed and
convex.

Corollary . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sets
and uniformly convex on bounded sets. Let C be a nonempty, closed and convex subset of E
and let T : C → E be a Bregman nonexpansive mapping. If F(T) 
= ∅, then it is closed and
convex.

Using ideas in [], we can prove the following result.

Theorem . Let E be a reflexive Banach space and let g : E → R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E and let T : C → C be a mapping. Let {xn}n∈N be a bounded sequence of C and let μ be
a mean on l∞. Suppose that

μnDg(xn,Ty) ≤ μnDg(xn, y)

for all y ∈ C. Then T has a fixed point in C.

Proof Let μ be a mean on l∞ and {xn}n∈N be a bounded sequence in C. Define a mapping
h : E∗ →R by

h
(
x∗) = μn

〈
xn,x∗〉, x∗ ∈ E∗.

Since μ is linear, so is h. Observe that

∣∣h(x∗)∣∣ = ∣∣μn
〈
xn,x∗〉∣∣

≤ ‖μ‖ sup
n∈N

∣∣〈xn,x∗〉∣∣
≤ ‖μ‖ sup

n∈N
‖xn‖

∥∥x∗∥∥
= sup

n∈N
‖xn‖

∥∥x∗∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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for all x∗ ∈ E∗. This implies that h is a linear and continuous real-valued mapping on E∗.
Since E is reflexive, then there exists a unique element z ∈ E such that

h
(
x∗) = μn

〈
xn,x∗〉 = 〈

z,x∗〉, x∗ ∈ E∗.

We claim that z ∈ C. If not, then by the separation theorem [] there exists y∗ ∈ E∗ such
that

〈
z, y∗〉 < inf

y∈C
〈
y, y∗〉.

Since {xn}n∈N ⊂ C, we conclude that

〈
z, y∗〉 < inf

y∈C
〈
y, y∗〉 ≤ inf

n∈N
〈
xn, y∗〉 ≤ μn

〈
xn,x∗〉 = 〈

z,x∗〉.

This is a contradiction. Thus we have z ∈ C. In view of (.), for any y ∈ C and n ∈ N, we
deduce that

Dg(xn, y) =Dg(xn,Ty) +Dg(Ty, y) +
〈
xn – Ty,∇g(Ty) –∇g(y)

〉
.

Thus we have, for any y ∈ C, that

μnDg(xn, y) = μnDg(xn,Ty) +μnDg(Ty, y) +μn
〈
xn – Ty,∇g(Ty) –∇g(y)

〉
= μnDg(xn,Ty) +Dg(Ty, y) +

〈
z – Ty,∇g(Ty) –∇g(y)

〉
.

By the assumption, we have that

μnDg(xn,Ty) ≤ μnDg(xn, y)

for all y ∈ C. This implies that

μnDg(xn, y) ≤ μnDg(xn, y) +Dg(Ty, y) +
〈
z – Ty,∇g(Ty) –∇g(y)

〉
(.)

for all y ∈ C. Putting y = z in (.) and taking into account (.), we see that

 ≤ Dg(Tz, z) +
〈
z – Tz,∇g(Tz) –∇g(z)

〉
= –Dg(z,Tz) +

〈
z – Tz,∇g(z) –∇g(Tz)

〉
+

〈
z – Ty,∇g(Tz) –∇g(z)

〉
= –Dg(z,Tz).

Then we have  ≤ –Dg(z,Tz), which implies that Dg(z,Tz) = . In view of Lemma ., we
conclude that Tz = z, which completes the proof. �

Remark . Let g and T be as in Example .. Let x ∈ [, .] be fixed. Then {Tnx}n∈N is a
bounded sequence in [, .]. Set xn := Tnx for n = , , . . . . It is obvious that T satisfies all
the aspects of the hypothesis of Theorem ., so it has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Corollary . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E and let T : C → C be a mapping. Suppose that there exist x ∈ C and a Banach limit μ

such that {Tnx}n∈N is bounded and

μnDg
(
Tnx,Ty

) ≤ μnDg
(
Tnx, y

)

for all y ∈ C. Then T has a fixed point.

Corollary . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E and let T : C → C be a Bregman nonexpansive mapping. Suppose that there exists
x ∈ C such that {Tnx}n∈N is bounded. Then T has a fixed point.

Proof Let μ a Banach limit on l∞ and x ∈ C be such that {Tnx}n∈N is bounded. Then we
have

μnDg
(
Tnx,Ty

)
= μnDg

(
Tn+x,Ty

) ≤ μnDg
(
Tnx, y

)

for all y ∈ C. In view of Corollary ., we deduce that F(T) 
= ∅, which completes the
proof. �

Corollary . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sets
and uniformly convex on bounded sets. Let C be a nonempty, bounded, closed and convex
subset of E and let T : C → C be a Bregman nonexpansive mapping. Then T has a fixed
point.

Definition . LetA andC be nonempty subsets of a real Banach space E withA⊂ C.We
say that A is a Bregman nonexpansive retract of C if there exists a Bregman nonexpansive
map R : C → A such that R(a) = a for every a ∈ A.

Definition . Let C be a nonempty, closed and convex subset of a real Banach space E.
The mapping T : C → C is called Bregman NR-map if Fix(T) is a Bregman nonexpansive
retract of C.

Theorem . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sets
and uniformly convex on bounded sets. Let C be a nonempty, bounded, closed and convex
subset of E. Let T : C → C be a continuous Bregman NR-map. Let S : C → C be a Breg-
man nonexpansive mapping such that (S,T) is a Banach operator pair. Then F(S,T) is not
empty.

Proof Since the retract of a nonempty space is nonempty, Fix(T) is nonempty and is closed
as T is continuous. Since T is a BregmanNR-map, then there exists a Bregman nonexpan-
sive retract R : C → Fix(T). Since (S,T) is a Banach operator pair, then S(Fix(T))⊂ Fix(T).

http://www.fixedpointtheoryandapplications.com/content/2013/1/113
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Hence S ◦ R : C → C is a Bregman nonexpansive map such that S ◦ R(C)⊂ Fix(T). Corol-
lary . implies the existence of a fixed point of S ◦ R. Clearly, such a fixed point is a fixed
point of S which belongs to Fix(T). Hence Fix(T)∩ Fix(S) = F(S,T) is not empty. �

Example . Let E be a reflexive and smooth Banach space and let C be a closed and
convex subset of E such that  ∈ C. Let T : C → E be defined as

T(x) = –x, x ∈ C.

Then T is a Bregman quasi-nonexpansive mapping with g(x) = 
‖x‖, ∇g(x) = Jx for all

x ∈ C and F(T) = {}. Indeed, it is clear that

‖Tx‖ ≤ ‖x‖, ∀x ∈ C.

This implies that

g(Tx) – g(x) =


‖Tx‖ – 


‖x‖ ≤ 〈

,∇g(Tx) –∇g(x)
〉
=

〈
p,∇g(Tx) –∇g(x)

〉

for all p ∈ F(T). Then we have

‖p‖ + ‖Tx‖ – 
〈
p,∇g(Tx)

〉 ≤ ‖p‖ + ‖x‖ – 
〈
p,∇g(x)

〉
.

This means that

Dg(p,Tx) ≤ Dg(p,x),

for all p ∈ F(T) and x ∈ C. Hence, T is a Bregman quasi-nonexpansive mapping. Define a
mapping R : C → {} by

R(x) = , ∀x ∈ C.

Then T is a Bregman NR-map.
Assume now that h : E →R is a lower semicontinuous function satisfying the following

conditions:
(i) h is totally convex on bounded sets;
(ii) h, as well as its Fenchel conjugate h∗, are defined and (Gâteaux) differentiable on E

and E∗, respectively;
(iii) h′ is uniformly continuous and h∗ is bounded on bounded sets.

Let A : domA→ E∗ be an operator and  be a nonempty subset of domA such that  ∈ ,
A() =  and C ⊂ domA. For any α ∈ (,∞), we define the operator Ah

α : domA→ E by

Ah
αx = h∗′(h′(x) – αAx

)
.

It is worth mentioning that Ax =  if and only if x ∈ domA is a fixed point of Ah
α . The

operator A is said to be inverse-strongly-monotone relative to h on the set  if there exist
a real number α >  and a vector z ∈  such that

〈
Ay,Ah

αy – z
〉 ≥ , ∀y ∈ .
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If we set S := Ah
α , then S is a Bregman nonexpansive mapping (for more details, see []).

It is clear that T and S satisfy all the aspects of the hypothesis of Theorem . and T and
S have a common fixed point.

Remark . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sub-
sets and uniformly convex on bounded subsets. LetC be a nonempty, bounded, closed and
convex subset of E and let T : C → C be a Bregman nonexpansive mapping. Then, in view
of Corollary . and Lemma ., Fix(T) is not empty and closed convex which implies that
Fix(T) is a Bregman nonexpansive retract of C. Thus T is a Bregman NR-map.

Theorem . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let T and S be two Bregman nonexpansive self-
mappings defined on a closed and convex subset C of E. If (S,T) is a Banach operator pair
and T(C) is bounded, then Fix(T)∩ Fix(S) 
= ∅.

Proof Let K = conv(T(C)). Then T : K → K and K is nonempty and bounded. In view of
Corollary ., the fixed point set Fix(T) of T is nonempty and bounded. Since (S,T) is a
Banach operator pair, S : Fix(T) → Fix(T). By Corollary ., S has a fixed point in Fix(T)
as required. �

The following slight extension of Theorem . can be proved easily.

Theorem . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E. Let X be a normed space and T and S be two Bregman nonexpansive self-mappings
defined on a closed convex set C ⊂ E. If (S,T) is a Banach operator pair, and if Tn(C) is
bounded for some n ∈N, then Fix(T)∩ Fix(S) 
= ∅.

Corollary . Let E be a reflexive Banach space and let g : E → R be a convex, continu-
ous, strongly coercive and Gâteaux differentiable function which is bounded on bounded
subsets and uniformly convex on bounded subsets. Let C be a nonempty, bounded, closed
and convex subset of E. Let T : C → C be Bregman nonexpansive. Let S : C → C be a Breg-
man nonexpansive mapping such that (S,T) is a Banach operator pair. Then F(S,T) is not
empty.

Corollary . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset of
E. Let T : C → C be a Bregman nonexpansive map such that T(C) is bounded and T(C) ⊂
Fix(T). Let S : C → C be a Bregman nonexpansive mapping such that (S,T) is nontrivially
a Banach operator pair. Then Fix(S)∩ Fix(T) is not empty.

Corollary . Let E be a reflexive Banach space and let g : E → R be a convex, continu-
ous, strongly coercive and Gâteaux differentiable function which is bounded on bounded
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subsets and uniformly convex on bounded subsets. Let C be a nonempty, closed and con-
vex subset of E. Let S,T : C → C be a nontrivially Banach operator pair such that Fix(T) is
bounded and S is a Bregman nonexpansivemap.Assume that T : C → Fix(T) is a Bregman
nonexpansive map. Then Fix(S)∩ Fix(T) is not empty.

Theorem . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset of
E which has the property that every Bregman nonexpansive mapping of C → C is Bregman
NR-map. Suppose T : C → C is a mapping for which Tn is Bregman nonexpansive for some
n ∈ N, and suppose the restriction of T to Fix(Tn) is also Bregman nonexpansive. Then
Fix(T) is a nonempty Bregman nonexpansive retract of C. Consequently, if S : C → C is
Bregman nonexpansive and if (S,T) is a Banach operator pair, then Fix(T) ∩ Fix(S) is a
nonempty Bregman nonexpansive retract of C.

Proof By assumption, there exists a Bregman nonexpansive retraction R of C onto
Fix(Tn). Consequently, T ◦ R is a Bregman nonexpansive mapping of C into C, so
Fix(T ◦ R) is a nonempty Bregman nonexpansive retract of C. But x ∈ Fix(T ◦ R) ⇔
x ∈ Fix(T)∩ Fix(Tn), and by Lemma  []

x ∈ Fix(T)∩ Fix
(
Tn) ⇔ x ∈ Fix

(
Tn+) ∩ Fix

(
Tn) = Fix(T).

Therefore there is a Bregman nonexpansive retraction R of C onto Fix(T). So, S ◦ R

is a Bregman nonexpansive mapping of C into Fix(T). Therefore Fix(S ◦ R) = Fix(S) =
Fix(S)∩ Fix(T) is a nonempty Bregman nonexpansive retract of C. �

Wemight observe that in the above theorem it is not necessary that T be Bregman non-
expansive. The only facts needed for the proof is that Fix(Tn) be a Bregman nonexpansive
retract of C.

4 Fixed point of Banach operator family
Definition . Let C be a closed and convex subset of a real Banach space E and let T and
S be two self-maps on C. The pair (S,T) is called a symmetric Banach operator pair if both
(S,T) and (T ,S) are Banach operator pairs, i.e., T(Fix(S))⊆ Fix(S) and S(Fix(T))⊆ Fix(T).

It is easy to see that the pair (S,T) is a symmetric Banach operator pair if and only if T
and S are commuting on Fix(T)∪ Fix(S).

Definition. AsubsetA of a Banach space E is said to be a -local Bregman retract of E if
for every family {Bi : i ∈ I} of Bregman closed balls centered in A with nonempty intersec-
tion, it is the case that A∩ (

⋂
i∈I Bi) 
= ∅. It is immediate that each Bregman nonexpansive

retract of E is a -local Bregman retract (but not conversely).

Definition . Let C be a closed and convex subset of a real Banach space E and let T
be a family of mappings defined on C. Then the family T has a common fixed point if it
is the fixed point of each member of T . The family T is called a Banach operator family if
any two of maps in the family form a symmetric Banach operator pair.
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Theorem . Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive andGâteaux differentiable function which is bounded on bounded subsets
and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex subset
of E and let H be a nonempty family of Bregman nonexpansive maps of C into itself. If H
is a Banach operator family and there exists T ∈H such that T(C) is compact, thenH has
a common fixed point in C.

Proof Let K = conv(T(C)). It suffices to show that each finite subfamily of H has a
nonempty common fixed point set in K . The full conclusion then follows from the com-
pactness ofK . Let {T,T, . . . ,Tn} be a finite subfamily ofH. As above, Fix(T) is nonempty.
Since (T,T) is a Banach operator pair, T : Fix(T) → Fix(T). By Corollary ., T has a
fixed point in Fix(T). Since (T,T) is a Banach operator pair, T : Fix(T) → Fix(T). Pro-
ceeding in a step by step way, we conclude Fix(T)∩ Fix(T)∩ · · · ∩ Fix(Tn) 
= ∅. �

Theorem. Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sub-
sets and uniformly convex on bounded subsets. Let C be a nonempty, bounded, closed and
convex subset of E such that BA(C) is compact and normal. Let T be a family of Bregman
nonexpansive mappings T,T, . . . ,Tn, Ti : C → C. Assume that any two mappings from
T form a symmetric Banach operator pair. Then the family T has a common fixed point.
Moreover, the common fixed point set Fix(T ) is a -local Bregman retract of C.

Proof First, let us prove that F = Fix(T ) is not empty. Using Corollary ., we know that
Fix(T) is not empty. Since Fix(T) is a -local Bregman retract [] of C, by a similar argu-
ment as in [], we conclude thatA(Fix(T)) is compact and normal. On the other hand, we
have T(Fix(T)) ⊂ Fix(T) because any two mappings from T form a symmetric Banach
operator pair. Hence T has a fixed point in Fix(T). If we restrict ourselves to Fix(T,T),
the common fixed point set of T and T, then one can prove in an identical argument that
T has a fixed point in Fix(T,T). Step by step, we can prove that the common fixed point
set Fix(T ) of T, . . . ,Tn is not empty. The same argument, used to prove that the fixed
point set of a Bregman nonexpansive map is a -local Bregman retract, can be reproduced
here to prove that Fix(T ) is a -local Bregman retract. �

Theorem. Let E be a reflexive Banach space and let g : E →R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sub-
sets and uniformly convex on bounded subsets. Let C be a nonempty, bounded, closed and
convex subset of E such that BA(C) is compact and normal. Let T be a family of Bregman
nonexpansive mappings (Ti)i∈I , Ti : C → C. Assume that any two mappings from T form a
symmetric Banach operator pair. Then the family T has a common fixed point.Moreover,
the common fixed point set Fix(T ) is a -local Bregman retract of C.

Proof 	 = I = {β ⊂ I : β is finite and nonempty}. It is obvious that	 is downward directed
(the order on	 is the set inclusion). Theorem . implies that for every β ∈ 	, the set Fβ of
a common fixed point set of themappings Ti, i ∈ β , is a nonempty -local Bregman retract
of C. Clearly, the family (Fβ)β∈	 is decreasing. Using the remark following Theorem  [],
we deduce that

⋂
β∈	 Fβ is nonempty and is a -local Bregman retract of C. �
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Lemma . Let E be a reflexive Banach space and let g : E → R be a convex, continuous,
strongly coercive and Gâteaux differentiable function which is bounded on bounded sub-
sets and uniformly convex on bounded subsets. Let C be a nonempty, closed and convex
subset of E such that BA(C) is compact and normal. Let T be a family of Bregman non-
expansive mappings defined on C. Let τ be a topology on C for which the closed balls are
τ -closed. Assume that there exists a bounded subset A ⊂ C with δ = B-diam(A) such that
C =

⋂
a∈A B̄(a, δ), is -local Bregman retract of C, A ⊂ T(A)

τ
, for any T ∈ T , where T(A)

τ

is the τ -closure of T(A). Assume that any two mappings from T form a symmetric Banach
operator pair. Then the family T has a common fixed point.

Proof Denote by δ = B-diam(A). Consider the subset

C =
⋂
a∈A

B̄(a, δ).

Clearly, we have A⊂ C. Let T ∈ T , then

T(C) ⊂
⋂
a∈A

B̄
(
T(a), δ

)

since T is Bregman nonexpansive. This implies

T(A) ⊂
⋂

c∈T(C)
B̄(c, δ).

Since the Bregman closed balls are τ -closed, we get

T(A)
τ ⊂

⋂
c∈T(C)

B̄(c, δ).

Our assumption implies

A⊂
⋂

c∈T(C)
B̄(c, δ).

Hence

T(C) ⊂
⋂
a∈A

B̄(a, δ) = C.

Since C is bounded and is -local Bregman retract of C, so BA(C) is compact and normal
and the theorem above implies that T has a common fixed point. �

Definition . Let C be nonempty, closed and convex subset of a Banach space E. Let
T be a family of mappings defined on C. The family T is called a semigroup if S ◦ T ∈ T
whenever S,T ∈ T . We will call the semigroup T an invertible semigroup if and only if
any element in T is invertible and T– ∈ T for any T ∈ T . For any x ∈ C, define the orbit
of x by

T (x) =
{
T(x);T ∈ T

}
.
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Theorem. Let C be a nonempty, closed and convex subset of a Banach space E such that
BA(C) is compact and normal. Let T be an invertible semigroup of isometric mappings
defined on H such that any two mappings from T form a symmetric Banach operator pair.
Assume that C =

⋂
a∈A B̄(a, δ) is -local Bregman retract of C, where A = T (x) and δ =

B-diam(A). Then the family T has a common fixed point if and only if
⋂

T∈T T(C) is not
empty and T -orbits are bounded.

Proof Clearly, if T has a fixed point, then we have
⋂

T∈T T(C) is not empty and T -orbits
are bounded. So, let us assume that

⋂
T∈T T(C) is not empty and T -orbits are bounded.

Let x ∈ ⋂
T∈T T(C). The orbit A = T (x) is bounded. Note that T(A) = A for any A ∈ T .

Indeed, by the definition of the orbit T (x), we have T(A) ⊂ A. Let a ∈ A, then there ex-
ists S ∈ T such that a = S(x). Clearly, we have a = T(T– ◦ S(x)). Since T– ◦ S ∈ T , we
conclude that a ∈ T(A). Next we consider the admissible subset C =

⋂
a∈A B̄(a, δ), where

δ = B-diam(A). Obviously, A ⊂ C and C is a bounded and -local Bregman retract of C.
As in the proof of the lemma above, one will easily show that T(C) ⊂ C for any T ∈ T . So,
from Theorem ., we conclude that T has a common fixed point and its fixed point set
Fix(T ) is -local Bregman retract of C. �
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