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Abstract

Bruck [Pac. J. Math. 53, 59-71 1974 Theorem 1] proved that for a nonempty closed
convex subset E of a Banach space X, if E is weakly compact or bounded and
separable and suppose that E has both (FPP) and (CFPP), then for any commuting
family S of nonexpansive self-mappings of E, the set F(S) of common fixed points of S
is a nonempty nonexpansive retract of E. In this paper, we extend the above result
when one of its elements in S is multivalued. The result extends previously known
results (on common fixed points of a pair of single valued and multivalued
commuting mappings) to infinite number of mappings and to a wider class of spaces.
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1 Introduction
For a pair (t, T) of nonexpansive mappings t : E ® E and T : E ® 2X defined on a

bounded closed and convex subset E of a convex metric space or a Banach space X,

we are interested in finding a common fixed point of t and T. In [1], Dhompongsa et

al. obtained a result for the CAT(0) space setting:

Theorem 1.1. [[1], Theorem 4.1] Let E be a nonempty bounded closed and convex

subset of a complete CAT(0) space X, and let t : E ® E and T : E ® 2X be nonexpan-

sive mappings with T(x) a nonempty compact convex subset of X. Assume that for some

p Î Fix(t),

αp ⊕ (1 − α)Tx is convex for x ∈ E,α ∈ [0, 1].

If t and T are commuting, then Fix(t) ∩ Fix(T) ≠ ∅.

Shahzad and Markin [2] improved Theorem 1.1 by removing the assumption that the

nonexpansive multivalued mapping T in that theorem has a convex-valued contractive

approximation. They also noted that Theorem 1.1 needs the additional assumption

that T(·) ∩ E ≠ ∅ for that result to be valid.

Theorem 1.2. [[2], Theorem 4.2] Let X be a complete CAT(0) space, and E a

bounded closed and convex subset of X. Assume t : E ® E and T : E ® 2X are nonex-

pansive mappings with T(x) a compact convex subset of X and T(x) ∩ E ≠ ∅ for each x

Î E. If the mappings t and T commute, then Fix(t) ∩ Fix(T) ≠ ∅.
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Dhompongsa et al. [3] extended Theorem 1.1 to uniform convex Banach spaces.

Theorem 1.3. [[3], Theorem 4.2] Let E be a nonempty bounded closed and convex

subset of a uniform convex Banach space X. Assume t : E ® E and T : E ® 2E are non-

expansive mappings with T(x) a nonempty compact convex subset of E. If t and T are

commuting, then Fix(t) ∩ Fix(T) ≠ ∅.

The result has been improved, generalized, and extended under various assumptions.

See for examples, [[4], Theorem 3.3], [[5], Theorem 3.4], [[6], Theorem 3.9], [[7], The-

orem 4.7], [[8], Theorem 5.3], [[9], Theorem 5.2], [[10], Theorem 3.5], [[11], Theorem

4.2], [[12], Theorem 3.8], [[13], Theorem 3.1].

Recall that a bounded closed and convex subset E of a Banach space X has the fixed

point property for nonexpansive mappings (FPP) (respectively, for multivalued nonex-

pansive mappings (MFPP)) if every nonexpansive mapping of E into E has a fixed

point (respectively, every nonexpansive mapping of E into 2E with compact convex

values has a fixed point). The following concepts and result were introduced and

proved by Bruck [14,15]. For a bounded closed and convex subset E of a Banach space

X, a mapping t : E ® X is said to satisfy the conditional fixed point property (CFP) if

either t has no fixed points, or t has a fixed point in each nonempty bounded closed

convex set that leaves t invariant. A set E is said to have the hereditary fixed point

property for nonexpansive mappings (HFPP) if every nonempty bounded closed convex

subset of E has the fixed point property for nonexpansive mappings; E is said to have

the conditional fixed point property for nonexpansive mappings (CFPP) if every nonex-

pansive t : E ® E satisfies (CFP).

Theorem 1.4. [[15], Theorem 1] Let E be a nonempty closed convex subset of a

Banach space X. Suppose E is weakly compact or bounded and separable. Suppose E

has both (FPP) and (CFPP). Then for any commuting family S of nonexpansive self-

mappings of E, the set F(S) of common fixed points of S is a nonempty nonexpansive

retract of E.

The object of this paper is to extend Theorems 1.3 and 1.4 for a commuting family S

of nonexpansive mappings one of which is multivalued. As consequences,

(i) Theorem 1.3 is extended to a bigger class of Banach spaces while a class of

mappings is no longer finite;

(ii) Theroem 1.4 is extended so that one of its members in S can be multivalued.

2 Preliminaries
Let E be a nonempty subset of a Banach space X. A mapping t : E ® X is said to be

nonexpansive if

||tx − ty|| ≤ ||x − y||, x, y ∈ E.

The set of fixed points of t will be denoted by Fix(t) := {x Î E : tx = x}. A subset C

of E is said to be t-invariant if t(C) ⊂ C. As usual, B(x, ε) = {y Î X : ||x - y|| < ε}

stands for an open ball. For a subset A and ε >0, the ε-neighborhood of A is defined as

Bε(A) = {y ∈ X : ||x − y|| < ε, for some x ∈ A} =
⋃
x∈A

B(x, ε).

Note that if A is convex, then Bε(A) is also convex. We write Ā for the closure of A.
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We shall denote by 2E the family of all subsets of E, CB(E) the family of all none-

mpty closed bounded subsets of E and denote by KC(E) the family of all nonempty

compact convex subsets of E. Let H(·,·) be the Hausdorff distance defined on CB(X),

i.e.,

H(A,B) := max
{
sup
a∈A

dist(a,B), sup
b∈B

dist(b,A)
}
,A,B ∈ CB(X),

where dist(a, B) := inf{||a - b|| : b Î B} is the distance from the point a to the subset

B.

A multivalued mapping T : E ® CB(X) is said to be nonexpansive if

H(Tx,Ty) ≤ ||x − y|| for all x, y ∈ E.

T is said to be upper semi-continuous if for each x0 Î E, for each neighborhood U of

Tx0, there exists a neighborhood V of x0 such that Tx ⊂ U for each x Î V. Clearly,

every upper semi-continuous mapping T has a closed graph, i.e., for each sequence

{xn} ⊂ E converging to x0 Î E, for each yn Î Txn with yn ® y0, one has y0 Î Tx0. Fix

(T ) is the set of fixed points of T, i.e., Fix(T):= {x Î E : x Î Tx}. A subset C of E is

said to be T-invariant if Tx ∩ C ≠ ∅ for all x Î C. For l Î (0, 1), we say that a multi-

valued mapping T : E ® CB(X) satisfies condition (Cl) if ldist(x, Tx) ≤ ||x - y|| implies

H(Tx, Ty) ≤ ||x - y|| for x, y Î E. The following example shows that a mapping T

satisfying condition (Cl) for some l Î (0, 1) can be discontinuous:

Let l Î (0, 1) and a = 2(λ+1)
λ(λ+2). Define a mapping T : [0, 2

λ
] → KC([0, 2

λ
]) by

Tx =
( { x2 } if x �= 2

λ
,

[ 1
λ
, a] if x = 2

λ
.

Clearly, 1
λ

< a < 2
λ
and T is nonexpansive on [0, 2

λ
). Thus, we only verify that, for

λdist(x,Tx) ≤ ||x − 2
λ

|| ⇒ H
(
Tx,T

2
λ

)
≤ ||x − 2

λ
||,

λdist(x,Tx) ≤ ||x − 2
λ

|| ⇒ H
(
Tx,T

2
λ

)
≤ ||x − 2

λ
|| (2:1)

and

λdist
(
2
λ
,T

2
λ

)
≤ ||2

λ
− x|| ⇒ H

(
T
2
λ
,Tx

)
≤ ||2

λ
− x||. (2:2)

If λdist(x,Tx) ≤ ||x − 2
λ

||, then x ≤ 4
λ(λ+2) and

H
(
Tx,T

2
λ

)
= a − x

2
≤ 2

λ
− x = ||x − 2

λ
||.

Hence (2.1) holds. If λdist( 2
λ
,T 2

λ
) ≤ || 2

λ
− x||, then x ≤ 4

λ(λ+2) and

H
(
T
2
λ
,Tx

)
= a − x

2
≤ 2

λ
− x = ||2

λ
− x||.

Thus (2.2) holds. Therefore, T satisfies condition (Cl). Clearly, T is upper semi-

continuous but not continuous (and hence T is not nonexpansive).
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For a multivalued mapping T : E ® CB(X), a sequence {xn} in E of a Banach space X

for which limn®∞ dist(xn, Txn) = 0 is called an approximate fixed point sequence (afps

for short) for T.

Let (M, d) be a metric space. A geodesic path joining x Î X to y Î X is a map c from a

closed interval [0, r] ⊂ ℝ to X such that c(0) = x, c(r) = y and d(c(t), c(s)) = |t - s| for all s,

t Î [0, r]. The mapping c is an isometry and d(x, y) = r. The image of c is called a geode-

sic segment joining x and y which when unique is denoted by seg[x, y]. A metric space

(M, d) is said to be of hyperbolic type if it is a metric space that contains a family L of

metric segments (isometric images of real line bounded segments) such that (a) each

two points x, y in M are endpoints of exactly one member seg[x, y] of L, and (b) if p, x, y

Î M and m Î seg[x, y] satisfies d(x, m) = ad(x, y) for a Î [0, 1], then d(p, m) ≤ (1 - a)d
(p, x) + ad(p, y). M is said to be metrically convex if for any two points x, y Î M with x

≠ y there exists z Î M, x ≠ z ≠ y, such that d(x, y) = d(x, z) + d(z, y). Obviously, every

metric space of hyperbolic type is always metrically convex. The converse is true pro-

vided that the space is complete: If (M, d) is a complete metric space and metrically con-

vex, then (M, d) is of hyperbolic type (cf. [[16], Page 24]). Clearly, every nonexpansive

retract is of hyperbolic type.

Proposition 2.1. [[17], Proposition 2] Suppose (M, d) is of hyperbolic type, let {an} ⊂
[0, 1), if {xn} and {yn} are sequences in M which satisfy for all i, n,

(i) xn+1 Î seg[xn, yn] with d(xn, xn+1) = and(xn, yn),

(ii) d(yn+1, yn) ≤ d(xn+1, xn),

(iii) d(yi+n, xi) ≤ d <∞,

(iv) an ≤ b <1, and

(v)
∑∞

s=0 αs = +∞.

Then limn®∞ d(yn, xn) = 0.

Let E be a nonempty bounded closed subset of a Banach space X and {xn} a bounded

sequence in X. For x Î X, define the asymptotic radius of {xn} at x as the number

r(x, {xn}) = lim sup
n→∞

||xn − x||.

Let

r(E, {xn}) = inf{r(x, {xn}) : x ∈ E}

and

A(E, {xn}) = {x ∈ E : r(x, {xn}) = r(E, {xn})}.

The number r(E, {xn}) and the set A(E, {xn}) are, respectively, called the asymptotic

radius and asymptotic center of {xn} relative to E. The sequence {xn} is called regular

relative to E if r(E, {xn}) = r(E, {xn′}) for each subsequence {xn′} of {xn}. It is well known

that: every bounded sequence contains a subsequence that is regular relative to a given

set (see [[16], Lemma 15.2] or [[18], Theorem 1]). Further, {xn} is called asymptotically

uniform relative to E if A(E, {xn}) = A(E, {xn′}) for each subsequence {xn′} of {xn}. It was

noted in [16] that if E is nonempty and weakly compact, then A(E, {xn}) is nonempty

and weakly compact, and if E is convex, then A(E, {xn}) is convex.
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A Banach space X is said to satisfy the Kirk-Massa condition if the asymptotic center

of each bounded sequence of X in each bounded closed and convex subset is none-

mpty and compact. A more general space than spaces satisfying the Kirk-Massa condi-

tion is a space having property (D). Property (D) introduced in [19] is defined as

follows:

Definition 2.2. [[19], Definition 3.1] A Banach space X is said to have property (D) if

there exists l Î [0, 1) such that for any nonempty weakly compact convex subset E of X,

any sequence {xn} ⊂ E that is regular and asymptotically uniform relative to E, and any

sequence {yn} ⊂ A(E, {xn}) that is regular and asymptotically uniform relative to E we

have

r(E, {yn}) ≤ λr(E, {xn}).

Theorem 2.3. [[19], Theorem 3.6] Let E be a nonempty weakly compact convex sub-

set of a Banach space X that has property (D). Assume that T : E ® KC(E) is a nonex-

pansive mapping. Then, T has a fixed point.

A direct consequence of Theorem 2.3 is that every weakly compact convex subset of

a space having property (D) has both (MFPP) for multivalued nonexpansive mappings

and (CFPP). The class of spaces having property (D) contains several well-known ones

including k-uniformly rotund, nearly uniformly convex, uniformly convex in every

direction spaces, and spaces satisfying Opial condition (see [3,19-23] and references

therein).

The following useful result is due to Bruck:

Theorem 2.4. [[14], Theorem 1] Let E be a nonempty closed convex subset of a

Banach space X. Suppose E is locally weakly compact and F is a nonempty subset of E.

Let N(F) = {f|f} : E ® E is nonexpansive and fx = x for all x Î F}. Suppose that for

each z in E, there exists h in N(F) such that h(z) Î F. Then, F is a nonexpansive retract

of E.

3 Main results
We first state three main results:

Theorem 3.1. Let E be a weakly compact convex subset of a Banach space X. Suppose

E has (MFPP) and (CFPP). Let S be any commuting family of nonexpansive self-mappings

of E. If T : E ® KC(E) is a multivalued nonexpansive mapping that commutes with every

member of S. Then, F(S) ∩ Fix(T) ≠ ∅.

Theorem 3.2. Let X be a Banach space satisfying the Kirk-Massa condition and let E

be a weakly compact convex subset of X. Let S be any commuting family of nonexpan-

sive self-mappings of E. Suppose T : E ® KC(E) is a multivalued mapping satisfying

condition (Cl) for some l Î (0, 1) that commutes with every member of S. If T is upper

semi-continuous, then F(S) ∩ Fix(T) ≠ ∅.

Theorem 3.3. Let E be a weakly compact convex subset of a Banach space X. Suppose

E has (MFPP) and (CFPP). Let S be any commuting family of nonexpansive self-mappings

of E. If T : E ® KC(E) is a multivalued nonexpansive mapping that commutes with every

member of S. Suppose in addition that T satisfies.

(i) there exists a nonexpansive mapping s : E ® E such that sx Î Tx for each x Î E,

(ii) Fix(T) = {x Î E : Tx = {x}} ≠ ∅.
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Then, F(S) ∩ Fix(T) is a nonempty nonexpansive retract of E.

Remark 3.4.

(i) As corollaries, the results in Theorems 3.1 and 3.3 are valid for spaces X having

property (D).

(ii) Theorem 3.3 can be viewed as a generalization of Theorem 1.4 of Bruck for

weakly compact convex domains.

Definition 3.5. Let E be a nonempty bounded closed and convex subset of a Banach

space X. Let t : E ® E be a single valued mapping, T : E ® KC(E) a multivalued map-

ping. Then, t and T are said to be commuting mappings if tTx ⊂ Ttx for all x Î E.

If in Theorem 2.4, we put F = Fix(t) where t : E ® E is nonexpansive, then it was noted

in [[15], Remark 1] that a retraction c Î N(F) can be chosen so that cW ⊂ W for all t-

invariant closed and convex subsets W of E. With the same proof, we can show that the

same result is valid for F = F(S). In this case, we define N(F(S)) = {f | f : E ® E is nonex-

pansive, Fix(f) ⊃ F(S), f(W) ⊂ W whenever W is a closed convex S-invariant subset of E}.

Here, by an “S-invariant"subset, we mean a subset that is left invariant under every mem-

ber of S.

Lemma 3.6. Let E be a nonempty weakly compact convex subset of a Banach space X

and let S be any commuting family of nonexpansive self-mappings of E. Suppose that E

has (FPP) and (CFPP). Then, F(S) is a nonempty nonexpansive retract of E, and a

retraction c can be chosen so that every S-invariant closed and convex subset of E is

also c-invariant.

Proof. Note by Theorem 1.4 that F(S) is nonempty. According to Theorem 2.4, it suf-

fices to show that for each z in E, there exists h in N(F(S)) such that h(z) Î F(S).

Let z Î E and K = {f(z)|f Î N(F(S))} ⊂ E. Since K is weakly compact convex and

invariant under every member in S, we obtain by Theorem 1.4 that F(S)∩K ≠ ∅, i.e.,

there exists h in N(F(S)) such that h(z) Î F(S). Theorem 2.4 then implies that F(S) is a

nonexpansive retract of E, where a retraction is chosen from N(F(S)). □
Proof of Theorem 3.1 Let c be a nonexpansive retraction of E onto F(S) obtained in

Lemma 3.6. Set Ux := Tcx for x Î E. Clearly,

H(Ux,Uy) = H(Tcx,Tcy) ≤ ||cx − cy|| ≤ ||x − y ‖ for x, y ∈ E.

Thus, U is nonexpansive, and since E has (MFPP), there exists p Î Up = Tcp. Since

Tcp is S-invariant, by the property of c, Tcp is also c-invariant, i.e., cp Î Tcp. There-

fore, F(S) ∩ Fix(T) ≠ ∅. □
The following proposition is needed for a proof of Theorem 3.2.

Proposition 3.7. Let A be a compact convex subset of a Banach space X and let a

nonempty subset F of A be a nonexpansive retract of A. Suppose a mapping U : A ®
KC(A) is upper semi-continuous and satisfies:

(i) c(Ux) ⊂ Ux for all x Î F where c is a nonexpansive retraction of A onto F, and

(ii) F is U -invariant.

Then, U has a fixed point in F.
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Proof. Let ε >0. Since F is compact, there exists a finite ε-dense subset {z1, z2, ..., zn}

of F , i.e., F ⊂ ⋃n
i=1 B(zi, ε

2). Put K := co(z1, z2, . . . , zn) and define Vx = Bε(Ucx) ∩ K for

x Î K. Clearly, V : K ® KC(K). For x Î K, cx Î F thus by (ii) there exists y Î Ucx ∩
F. Then, choose zi for some i such that ||zi − y|| ≤ ε

2. Therefore, zi ∈ B̄ε(Ucx) ∩ K, i.e.,

V x is nonempty for x Î K. We now show that V is upper semi-continuous. Let {xn}

be a sequence in K converging to some x Î K and yn Î V xn with yn ® y. Choose an
Î Ucxn such that ||yn - an|| ≤ ε. As A is compact, we may assume that an ® a for

some a Î A. By upper semi-continuity of U, a Î Ucx. Consider

||y − a|| ≤ ||y − yn|| + ||yn − an|| + ||an − a||.

By letting n ® ∞, we obtain ||y - a|| ≤ ε, i.e., y Î V x and the proof that V is upper

semi-continuous is complete. By Kakutani fixed point theorem, there exists pε Î V pε,

that is, ||pε - bε|| ≤ ε for some bε Î Ucpε.

By the assumption on U, we see that cbε Î Ucpε and ||cpε - cbε|| ≤ || pε - bε|| ≤ ε.

Taking ε = 1
n and write qn for cp1

n
and bn for cb1

n
, we obtain a sequence {qn} ⊂ F and bn

Î Uqn∩F with ||qn - bn|| ® 0. By the compactness of F, we assume that qn ® q and bn
® b. It is seen that q = b Î Uq. □
Proof of Theorem 3.2 As observed earlier, E has both (FPP) and (CFPP), thus we

start with a nonexpansive retraction c of E onto F(S) obtained by Lemma 3.6. For each

x Î F(S), Tx is invariant under every member of S and Tx is convex, thus Tx is c-

invariant. Clearly, c is a nonexpansive retraction of Tx onto Tx ∩ F(S) that is nonempty

by Theorem 1.4.

Next, we show that there exists an afps for T in F(S). Let x0 Î F (S). Since Tx0 ∩ F

(S) ≠ ∅, we can choose y0 Î Tx0 ∩ F (S). Since F (S) is of hyperbolic type, there exists

x1 Î F (S) such that

||x0 − x1|| = λ||x0 − y0||and||x1 − y0|| = (1 − λ)||x0 − y0||.

Choose y′1 Î Tx1 for which ||yo - y′1|| = dist(y0, Tx1). Set y1 = cy′1. Clearly, ||y0 - y1||

= ||cy0 - cy′1|| ≤ ||y0 - y′1||. Therefore, we can choose y1 Î Tx1 ∩ F (S) so that ||y0 -

y1|| = dist(y0, Tx1). In this way, we will find a sequence {xn} ⊂ F (S) satisfying

||xn − xn+1|| = λ||xn − yn|| and ||xn+1 − yn|| = (1 − λ)||xn − yn||,

where yn Î Txn ∩ F (S) and ||yn - yn+1|| = dist(yn, Txn+1).

Since ldist(xn, Txn) ≤ l||xn - yn|| = ||xn - xn+1||,

||yn − yn+1|| ≤ H(Txn,Txn+1) ≤ ||xn − xn+1||.

From Proposition 2.1, limn®∞ ||yn - xn|| = 0 and {xn} is an afps for T in F(S).

Assume that {xn} is regular relative to E. By the Kirk-Massa condition, A := A(E, {xn})

is assumed to be nonempty compact and convex. Define Ux = Tx ∩ A for x Î A. We

are going to show that Ux is nonempty for each x Î A. First, let r := r(E, {xn}). If r = 0

and if x Î A, then xn ® x and yn ® x. Using upper semi-continuity of T , we see that

x Î Tx, i.e., F(S) ∩ Fix(T) ≠ ∅.

Therefore, we assume for the rest of the proof that r >0. Let x Î A. If for some sub-

sequence {xnk} of {xn}, λdist(xnk ,Txnk) ≥ ||xnk − x|| for each k, we have
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0 = lim sup
n→∞

λdist(xnk ,Txnk) ≥ lim sup
n→∞

||xnk − x|| ≥ r

since {xn} is regular relative to E and this is a contradiction. Therefore,

λdist(xn,Txn) ≤ ||xn − x|| for sufficiently large n. (3:1)

Now, we show that Ux is nonempty. Choose yn Î Txn so that ||xn - yn|| = dist(xn,

Txn) and choose zn Î Tx such that ||yn - zn|| = dist(yn, Tx). As Tx is compact, we may

assume that {zn} converges to z Î Tx. Using (3.1) and the fact that T satisfies condition

(Cl), we have

||xn − z|| ≤ ||xn − yn|| + ||yn − zn|| + ||zn − z||
= ||xn − yn|| + dist(yn,Tx) + ||zn − z||
≤ ||xn − yn|| +H(Txn,Tx) + ||zn − z||
≤ ||xn − yn|| + ||xn − x|| + ||zn − z|| for sufficiently large n.

Taking lim supn®∞ in the above inequalities to obtain

lim sup
n→∞

||xn − z|| ≤ lim sup
n→∞

||xn − x|| = r

that implies that z Î Ux proving that Ux is nonempty as claimed.

Now, we show that U is upper semi-continuous. Let {zk} be a sequence in A conver-

ging to some z Î A and yk Î Uzk with yk ® y. Consider the following estimates:

lim sup
n→∞

||xn−y|| ≤ lim sup
n→∞

||xn−yk||+lim sup
n→∞

||yk−y|| = r(E, {xn})+lim sup
n→∞

||yk−y|| for each k.

Letting k ® ∞, it follows that

lim sup
n→∞

||xn − y|| ≤ r(E, {xn}).

Hence y Î A. From upper semi-continuity of T, y Î Tz. Therefore, y Î Uz and thus

U is upper semi-continuous. Put F := F(S) ∩ A. Since A is c-invariant, it is clear that F

is a nonexpansive retract of A by the retraction c. Now, if x Î F, then Ux is S-invariant

which implies Ux is c-invariant. Therefore, condition (i) in Proposition 3.7 is justified.

To verify condition (ii), we let x Î F. Take y Î Ux. It is obvious that cy Î Ux ∩ F(S),

so U satisfies condition (ii) of Proposition 3.7. Upon applying Proposition 3.7 we

obtain a fixed point in F of U and thus of T and we are done. □
Proof of Theorem 3.3 By (i) and (ii), it is seen that Fix(T) = Fix(s). Note by Theo-

rem 3.1 that F(S) ∩ Fix(s) is nonempty. Let c be a retraction from E onto F(S) obtained

by Lemma 3.6. Here, c belongs to the set N(F(S)) = {f | f : E ® E is nonexpansive, Fix

(f) ⊃ F(S), f(W) ∩ W whenever W is a closed convex S-invariant subset of E}. Put F = F

(S) ∩ Fix(s) and let N(F) = {f | f : E ® E is nonexpansive, Fix(f) ⊃ F}. Let z Î E and

consider the weakly compact and convex set K := {f(z)|f Î N(F)}. It is left to show that

h(z) Î F for some h Î N(F). Since K is S-invariant, K is therefore c-invariant. It is evi-

dent that K is s-invariant. Thus sc : K ® K. Therefore, sc has a fixed point, say x, in K,

i.e., sc(x) = x. By (i), sc(x) Î Tcx. Since Tcx is c-invariant, we have cx Î Tcx. That is cx

Î Fix(T) = Fix(s). Hence scx = x = cx, i.e., cx Î F(S) ∩ Fix(s), and the proof is

complete. □
When S consists of only the identity mapping of E, we immediately have the follow-

ing corollary:
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Corollary 3.8. Let E be a weakly compact convex subset of a Banach space X. Sup-

pose E has (MFPP). If T : E ® KC(E) is a multivalued nonexpansive mapping satisfying.

(i) there exists a nonexpansive mapping s : E ® E such that sx Î Tx for each x Î E,

(ii) Fix(T) = {x Î E : Tx = {x}} ≠ ∅.

Then Fix(T) is a nonempty nonexpansive retract of E.

Of course, when T is single valued, condition (i) is satisfied. Even a very simple

example shows that condition (ii) in Corollary 3.8 may not be dropped.

Example 3.9. Let X be the Hilbert space ℝ2 with the usual norm, and let f : [0, 1] ®

[0, 1] be a continuous function that is strictly concave, f (0) = 1
2 and f(1) = 1. Moreover

let f′(x) ≤ 1 for x Î [0, 1]. Let T : [0, 1]2 ® KC([0, 1]2) be defined by T(x, y) = [0, x] ×

[f(x), 1]. We show that T is nonexpansive, but Fix(T)≠ {x : Tx = {x}} and Fix(T) is not

metrically convex. If (x1, y1), (x2, y2) Î [0, 1]2, then

H(T(x1, y1),T(x2, y2)) = |x1 − x2| ≤ ||(x1, y1) − (x2, y2)||.

Hence T is nonexpansive. However, a = (0, 12 )is a fixed point but Ta ≠ {a}. Finally, Fix

(T) is not metrically convex since, putting b = (1, 1), we see that b Î Tb, but
a+b
2 = (12 ,

3
4 ) /∈ T a+b

2 since f is strictly concave.

In [[14], Lemma 6] it was stated that: Let E be a nonempty weakly compact convex

subset of a Banach space X. Suppose E has (HFPP). Suppose F is a nonempty nonex-

pansive retract of E and t : E ® E is a nonexpansive mapping which leaves F invariant.

Then Fix(t) ∩ F is a nonempty nonexpansive retract of E.

Here, we have a multivalued version (with a similar proof) of this result.

Corollary 3.10. Let E and T be as in Corollary 3.8. Suppose F is a nonexpansive

retract of E by a retraction c. If Tx is c-invariant for each x Î F, then Fix(T) ∩ F is a

nonempty nonexpansive retract of E.
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