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1. Introduction and Preliminaries

It is well known that the vector equilibrium problem is closely related to vector variational
inequality, vector optimization problem, and many others (see, e.g., [1–6] and the references
therein).

Recently, a large of generalized vector equilibrium problems have been studied in
different conditions by many authors and a lot of results concerned with the existence of
solutions and properties of solutions have been given in finite and infinite dimensional spaces
(see [7] and the references therein).

The main purpose of this paper is to extend some known results for vector equilibrium
problems to topological ordered spaces (see [8]). We discuss three classes of generalized
implicit vector equilibrium problems in topological ordered spaces. Under some conditions,
we prove three new existence theorems of solutions for the generalized implicit vector
equilibrium problems in topological ordered spaces by using the Fan-Browder fixed point
theorem.

A semilattice is a partially ordered set X, with the partial ordering denoted by ≤, for
which any pair (x, x′) of elements has a least upper bound, denoted by x ∨ x′. It is easy to see
that any nonempty finite subset A of X has a least upper bound, denoted by supA. In the
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case x ≤ x′, the set [x, x′] = {y ∈ X : x ≤ y ≤ x′} is called an order interval. Now assume that
(X,≤) is a semilattice and A ⊆ X is a nonempty finite subset. Thus, the set

Δ(A) =
⋃

a∈A

[
a, supA

]
(1.1)

is well defined and it has the following properties:

(a) A ⊆ Δ(A),

(b) if A ⊆ A′, then Δ(A) ⊆ Δ(A′).

A subset E ⊆ X is said to be Δ-convex if, for any nonempty finite subset A ⊆ E, we
have Δ(A) ⊆ E.

For any D ⊂ X, F(D) denotes the family of all finite subsets of D and

Δ(D) =
⋃

A∈F(D)

Δ(A). (1.2)

Let X be a topological semilattice,K ⊂ X a nonempty Δ-convex subset, Y a Hausdorff
topological vector space. Assume that A : K → 2K, g : K → 2K, f : K × K → 2Y , and
C : K → 2Y such that, for any x ∈ K, C(x) is a closed, pointed, and convex cone in Y and
intC(x)/= ∅.

In this paper, we consider the following three classes generalized implicit vector
equilibrium problems:

(1) weak generalized implicit vector equilibrium problem (WGIVEP): find x∗ ∈ K,
such that x∗ ∈ A(x∗) and for any y ∈ A(x∗), there exists an u ∈ g(x∗) such that

f
(
u, y

) ∩ intC(x∗) = ∅; (1.3)

(2) strong generalized implicit vector equilibrium problem (SGIVEP): find x∗ ∈ K
such that x∗ ∈ A(x∗) and

f
(
u, y

) ∩ intC(x∗) = ∅, ∀y ∈ A(x∗), ∀u ∈ g(x∗). (1.4)

(3) uniform generalized implicit vector equilibrium problem (UGIVEP): find x∗ ∈ K
such that x∗ ∈ A(x∗) and there exists u∗ ∈ g(x∗) such that

f
(
u∗, y

) ∩ C(x∗) = ∅, ∀y ∈ A(x∗). (1.5)

Definition 1.1. Let X and Y be two topological spaces.
(1) A mapping F : X → 2Y is called upper semicontinuous (usc) at x0 ∈ X if, for any

neighborhood N(F(x0)) of F(x0), there exists a neighborhood N(x0) of x0 such that

F(x) ⊂ N(F(x0)), ∀x ∈ N(x0). (1.6)

F is called usc on X if it is usc at each point of X.
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(2) A mapping F : X → 2Y is called lower semicontinuous (lsc) at x0 ∈ X if, for any
net {xα} in X such that xα → x0 and for any y0 ∈ F(x0), there exists yα ∈ F(xα) such that
yα → y0. F is called lsc on X if it is lsc at each point of X.

(3) A mapping F : X → 2Y is called complement pseudo-upper semicontinuous (c
p-usc) at x0 ∈ X if, for y /∈F(xα) with xα → x0, we have y /∈F(x0). F is called c p-usc on X if
F is c p-usc at each point x0 of X.

Remark 1.2. (1) By [9], if F is usc with closed values, then for any net {xα} in X such that
xα → x0 and for any net {yα} in Y with yα ∈ F(xα) such that yα → y0 in Y , we have
y0 ∈ F(x0).

(2) If Y \ F is usc with closed values, then F is c p-usc, where

(Y \ F)(x) = Y \ F(x), ∀x ∈ X. (1.7)

Lemma 1.3 (see [9]). Let X and Y be two topological spaces. Let X be compact and F : X → 2Y be
usc such that F(x) is compact for each x ∈ X. Then F(X) =

⋃
x∈X F(x) is compact.

Definition 1.4. Let X be a topological semilattice or a Δ-convex subset of a topological
semilattice, let Y be a Hausdorff topological vector space, and let C ⊂ Y be a closed, pointed,
and convex cone with intC/= ∅.

(1) A mapping F : X → 2Y is called a Δ-convex mapping (or a Δ-concave mapping)
with respect to C if, for any nonempty finite subset D = {x1, x2, . . . , xn} ⊆ X, x ∈ Δ(D),
zi ∈ F(xi), ti ≥ 0 with i = 1, 2, . . . , n and

∑n
i=1 ti = 1, there exists z ∈ F(x) such that

n∑

i=1

tizi − z ∈ C

(
or z −

n∑

i=1

tizi ∈ C

)
. (1.8)

(2) A mapping F : X → 2Y is called to have Δ-inheritance if, for any nonempty finite
subset D = {x1, x2, . . . , xn} of X, x0 ∈ Δ(D), K ⊂ X with K ∩ F(xi) = ∅ and i = 1, 2, . . . , n, we
have K ∩ F(x0) = ∅.

(3) LetQ ⊆ X. AmappingG : X×X → 2Y is calledQ-Δ-convex (orQ-Δ-concave)with
respect to C in second argument if, for any nonempty finite subset D = {x1, x2, . . . , xn} ⊆ X,
x ∈ Δ(D), {u0, u1, u2, . . . , un} ⊆ Q, zi ∈ G(ui, xi), ti ≥ 0 with i = 1, 2, . . . , n and

∑n
i=1 ti = 1, there

exists z ∈ G(u0, x) such that

n∑

i=1

tizi − z ∈ C

(
or z −

n∑

i=1

tizi ∈ C

)
. (1.9)

Remark 1.5. If G : X × X → 2Y is a Q-Δ-convex mapping (or a Q-Δ-concave mapping) with
respect to C in second argument, then for any u ∈ X,G(u, ·) : X → 2Y is aΔ-convex mapping
(or a Δ-concave mapping) with respect to C.

Lemma 1.6 (see [10]). Let K be a nonempty compact Δ-convex subset of a topological semilattice
with path-connected intervals M, let F : K → 2K be a mapping with nonempty Δ-convex values
such that, for each y ∈ K, F−1(y) is an open set in K. Then F has a fixed point.
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2. Existence Theorems

Theorem 2.1. Let K be a nonempty compact Δ-convex subset of a topological semilattice with path-
connected intervals M, let Y be a Hausdorff topological vector space. Let A : K → 2K be a mapping
with nonempty Δ-convex values, and let g : K → 2K and f : K × K → 2Y be mappings and
C : K → 2Y be a mapping such that, for each x ∈ K, C(x) is a closed, pointed, and convex cone in Y
with intC(x)/= ∅. Assume that

(1) For any y ∈ K, A−1(y) is open;

(2) B = {x ∈ K : x ∈ A(x)} is closed;
(3) g is usc with compact values;

(4) f(u, x) ∩ intC(x) = ∅ for any x ∈ K and u ∈ g(x);

(5) for any x ∈ K and u ∈ g(x), y → f(u, y) is Δ-concave with respect to C(x);

(6) for any y ∈ K, x → f(x, y) is lsc;

(7) W : K → 2Y is usc, whereW(x) = Y \ intC(x) for each x ∈ K.

Then there exists an x∗ ∈ K such that x∗ ∈ A(x∗) and for any y ∈ A(x∗), there exists an
u∗ ∈ g(x∗) such that

f
(
u∗, y

) ∩ intC(x∗) = ∅. (2.1)

Furthermore, the solution set of (WGIVEP) is closed, and hence is compact.

Proof. Define P : K → 2K by

P(x) =
{
y ∈ K : ∀u ∈ g(x), f

(
u, y

) ∩ intC(x)/= ∅}, ∀x ∈ K. (2.2)

We first prove that for any y ∈ K, P−1(y) is open, that is,

K \ P−1(y
)
=
{
x ∈ K : x /∈ P−1(y

)}

=
{
x ∈ K : y /∈ P(x)

}

=
{
x ∈ K : ∃u ∈ g(x), f

(
u, y

) ∩ intC(x) = ∅}
(2.3)

is closed. Let a net {xα} ⊂ K \ P−1(y) and xα → x0 ∈ K. Then there exists uα ∈ g(xα) such
that f(uα, y) ∩ intC(xα) = ∅, f(uα, y) ⊂ W(xα), for any α. By (3) and Lemma 1.3, we know
that

g(K) =
⋃

x∈K
g(x) (2.4)

is compact and so {uα} ⊂ g(K) has a cluster point u0 ∈ g(K). We may assume that uα → u0

and thus, u0 ∈ g(x0). For any v0 ∈ f(u0, y), by (6), there exists vα ∈ f(uα, y) such that vα → v0

and so vα ∈ f(uα, y) ⊂ W(xα). It follows from (7) that v0 ∈ W(x0) = Y \ intC(x0) and hence
f(u0, y) ∩ intC(x0) = ∅. Thus, K \ P−1(y) is closed and so P−1(y) is open.
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Suppose that there exists an x0 ∈ K such that P(x0) is not Δ-convex, that is, there
exist y1, y2, . . . , yn ∈ P(x0) such that Δ(y1, y2, . . . , yn)/⊂P(x0). Hence, there exists y0 ∈
Δ(y1, y2, . . . , yn), y0 /∈ P(x0), that is, there exists u0 ∈ g(x0) such that f(u0, y0) ∩ intC(x0) =
∅. For each i = 1, 2, . . . , n, yi ∈ P(x0), take u = u0, f(u0, yi) ∩ intC(x0)/= ∅. Let vi ∈
f(u0, yi) ∩ intC(x0), i = 1, 2, . . . , n. For any ti ≥ 0, i = 1, 2, . . . , n, and

∑n
i=1 ti = 1, we have∑n

i=1 tivi ∈ intC(x0). By (5), there exists v ∈ f(u0, y0) such that

v −
n∑

i=1

tivi ∈ C(x0). (2.5)

Since v /∈ intC(x0), we know that

v −
(
v −

n∑

i=1

tivi

)
=

n∑

i=1

tivi /∈ intC(x0), (2.6)

which is a contradiction. Therefore, for any x ∈ K, P(x) is Δ-convex.
By (1) and Lemma 1.6, B /= ∅. Define S : K → 2K by

S(x) =

⎧
⎨

⎩
A(x) ∩ P(x), if x ∈ B,

A(x), if x ∈ K \ B.
(2.7)

Then S(x) is Δ-convex for each x ∈ K. It follows from (1) and (2) that

S−1(y
)
=
(
A−1(y

) ∩ P−1(y
)) ∪

(
(K \ B) ∩A−1(y

))
, ∀y ∈ K (2.8)

is open.
Suppose that for all x ∈ K, S(x) is nonempty. Then, by Lemma 1.6 S has a fixed point,

that is, there exists x0 ∈ K, such that x0 ∈ S(x0). If x0 ∈ B, then x0 ∈ S(x0) = A(x0) ∩ P(x0),
hence x0 ∈ P(x0), for all u ∈ g(x0), f(u, x0) ∩ intC(x0)/= ∅ which contradicts to assumption
(4); If x0 ∈ K \ B, then x0 ∈ S(x0) = A(x0), hence x0 ∈ B which contradicts with x0 ∈ K \ B.
Therefore, there exists x∗ ∈ K, such that S(x∗) = ∅. Since A(x) is nonempty for any x ∈ K,
then x∗ ∈ B, S(x∗) = A(x∗) ∩ P(x∗) = ∅, that is, x∗ ∈ A(x∗) and for any y ∈ A(x∗), y /∈ P(x∗).
Therefore, x∗ ∈ A(x∗) and for any y ∈ A(x∗), there exists an u∗ ∈ g(x∗) such that

f
(
u∗, y

) ∩ intC(x∗) = ∅. (2.9)

Let T denote the solution set of (WGIVEP) and {xα} ⊂ T with xα → x0 ∈ K. We show
that x0 ∈ T , that is, x0 ∈ A(x0), and for all y ∈ A(x0), there exists u0 ∈ g(x0) such that

f
(
u0, y

) ∩ intC(x0) = ∅. (2.10)

In fact, it follows from (2) that x0 ∈ A(x0). For any y ∈ A(x0), x0 ∈ A−1(y). By (1), there
exists an open neighborhood N(x0) of x0 such that N(x0) ⊂ A−1(y). Since xα → x0, there
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exists α0 such that for any α ≥ α0, xα ∈ N(x0) ⊂ A−1(y). Thus, y ∈ A(xα) and so there exists
uα ∈ g(xα) such that f(uα, y)∩intC(xα) = ∅, that is, f(uα, y) ⊂ W(xα). Since g(K) =

⋃
x∈K g(x)

is compact, {uα} ⊂ g(K) has a cluster point u0 ∈ g(K). We may assume that uα → u0. From
(3), we have u0 ∈ g(x0). By (6), for any q ∈ f(u0, y), there exists qα ∈ f(uα, y) such that
qα → q. It follows from (7) that q ∈ W(x0), that is, f(u0, y) ∩ intC(x0) = ∅. Thus, T is closed,
and hence is compact. This completes the proof.

Theorem 2.2. Let K be a nonempty compact Δ-convex subset of a topological semilattice with path-
connected intervals M, let Y be a Hausdorff topological vector space. Let A : K → 2K be with
nonempty Δ-convex values, and let g : K → 2K and f : K ×K → 2Y be mappings and C : K →
2Y be a mapping such that, for each x ∈ K, C(x) is a closed, pointed, and convex cone in Y with
intC(x)/= ∅. Assume that

(1) For any y ∈ K, A−1(y) is open;

(2) B = {x ∈ K : x ∈ A(x)} is closed;
(3) g is lsc;

(4) for all x ∈ K and u ∈ g(x), f(u, x) ∩ intC(x) = ∅;
(5) for all x ∈ K, f is g(x)-Δ-concave with respect to C(x) in second argument;

(6) for all y ∈ K, x → f(x, y) is lsc;

(7) W : K → 2Y is usc, whereW(x) = Y \ intC(x) for all x ∈ K.

Then there exists an x∗ ∈ K such that x∗ ∈ A(x∗) and

f
(
u, y

) ∩ intC(x∗) = ∅, ∀y ∈ A(x∗), ∀u ∈ g(x∗). (2.11)

Furthermore, the solution set of (SGIVEP) is closed, and hence is compact.

Proof. Define P : K → 2K by

P(x) =
{
y ∈ K : ∃u ∈ g(x), f

(
u, y

) ∩ intC(x)/= ∅}, ∀x ∈ K. (2.12)

Then the proof is similar to that of Theorem 2.1 and so we omit it.

Theorem 2.3. Let K be a nonempty compact Δ-convex subset of a topological semilattice with path-
connected intervals M and let Y be a Hausdorff topological vector space. Let A : K → 2K be with
nonempty Δ-convex values, let g : K → 2K and f : K ×K → 2Y be mappings, and let C : K →
2Y be a mapping such that, for each x ∈ K, C(x) is a closed, pointed, and convex cone in Y with
intC(x)/= ∅. Assume that

(1) A is usc with compact values;

(2) For any x ∈ K, g(x) is nonempty Δ-convex;

(3) g is c p-usc on X;

(4) f is usc with nonempty compact values;

(5) for all x, u ∈ K, f(u, x) ∩ C(x) = ∅;
(6) for all u, y ∈ K, x → f(u, x) is Δ-concave with respect to C(y);
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(7) C has Δ-inheritance;

(8) C is c p-usc on X.

Then there exists an x∗ ∈ K such that x∗ ∈ A(x∗) and there exists u∗ ∈ g(x∗) such that

f
(
u∗, y

) ∩ C(x∗) = ∅, ∀y ∈ A(x∗). (2.13)

Proof. Define F : K ×K → 2K×K by

F(x, u) = B(x, u) × g(x), ∀(x, u) ∈ K ×K, (2.14)

where

B(x, u) =
{
y ∈ A(x) : f(u, z) ∩ C

(
y
)
= ∅, ∀z ∈ A(x)

}
. (2.15)

The proof is divided into the following five steps.
(I) For any (x, u) ∈ K ×K, B(x, u) is nonempty.
If it is false, then there exists (x, u) ∈ K × K such that B(x, u) = ∅, that is, for any

y ∈ A(x), there exists z ∈ A(x) such that f(u, z) ∩ C(y)/= ∅. Let

G
(
y
)
=
{
z ∈ A(x) : f(u, z) ∩ C

(
y
)
/= ∅}. (2.16)

ThenG : A(x) → 2A(x) is nonempty values. If there exists y0 ∈ A(x) such thatG(y0) is notΔ-
convex, then there exist k1, k2, . . . , kn ∈ G(y0) such thatΔ({k1, k2, . . . , kn})/⊂G(y0), that is, there
exists q ∈ Δ({k1, k2, . . . , kn}) with q /∈G(y0). Thus, f(u, q) ∩ C(y0) = ∅. For each i = 1, 2, . . . , n,
ki ∈ G(y0), take vi ∈ f(u, ki) ∩ C(y0). For any ti ≥ 0, i = 1, 2, . . . , n and

∑n
i=1 ti = 1, we have∑n

i=1 tivi ∈ C(y0). By (6), there exists v ∈ f(u, q) such that

v −
n∑

i=1

tivi ∈ C
(
y0
)
. (2.17)

Since f(u, q) ∩ C(y0) = ∅, v /∈C(y0). Hence,

v −
(
v −

n∑

i=1

tivi

)
=

n∑

i=1

tivi /∈C
(
y0
)
, (2.18)

which is a contradiction. Thus, for any y ∈ A(x), G(y) is nonempty Δ-convex.
For any z ∈ A(x),

G−1(z) =
{
y ∈ A(x) : z ∈ G

(
y
)}

=
{
y ∈ A(x) : f(u, z) ∩ C

(
y
)
/= ∅}. (2.19)

It follows from (8) that

A(x) \G−1(z) =
{
y ∈ A(x) : f(u, z) ∩ C

(
y
)
= ∅} (2.20)
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is closed and so G−1(z) is open. Since A(x) is nonempty compact and Δ-convex, by
Lemma 1.6 G has a fixed point. Thus, there exists y∗ ∈ A(x) such that y∗ ∈ G(y∗), that
is, f(u, y∗) ∩ C(y∗)/= ∅ which contradicts with Assumption (5). Hence B(x, u)/= ∅ for any
(x, u) ∈ K ×K.

(II) For any (x, u) ∈ K ×K, B(x, u) is Δ-convex. If it is false, then there exists (x, u) ∈
K ×K such that B(x, u) is not Δ-convex, that is, there exist y1, y2, . . . , yn ∈ B(x, u) such that

Δ
({

y1, y2, . . . , yn

})
/⊂B(x, u). (2.21)

Thus, there exists y0 ∈ Δ({y1, y2, . . . , yn}) such that y0 /∈B(x, u). Then y1, y2, . . . , yn ∈ A(x)
and for all z ∈ A(x), f(u, z) ∩ C(yi) = ∅, i = 1, 2, . . . , n. Since A(x) is Δ-convex, y0 ∈ A(x). By
(7), f(u, z) ∩ C(y0) = ∅. Since y0 /∈B(x, u), there exists z0 ∈ A(x) such that

f(u, z0) ∩ C
(
y0
)
/= ∅, (2.22)

which is a contradiction. Therefore, for any (x, u) ∈ K ×K, B(x, u) is Δ-convex.
(III)F(x, u) is nonempty Δ-convex for any (x, u) ∈ K × K. By steps (I) and (II), the

conclusion follows directly from (2).
(IV) For any (y, v) ∈ K ×K,

F−1(y, v
)
=
{
(x, u) ∈ K ×K :

(
y, v

) ∈ F(x, u)
}

=
{
(x, u) ∈ K ×K : y ∈ B(x, u) and v ∈ g(x)

} (2.23)

is open. In fact, we only need to show that

(K ×K) \ F−1(y, v
)
=
{
(x, u) ∈ K ×K :

(
y, v

)
/∈B(x, u) × g(x)

}

=
{
(x, u) ∈ K ×K : y /∈B(x, u)

} ∪ {
(x, u) ∈ K ×K : v /∈ g(x)

} (2.24)

is closed. Let a net {(xα, uα)} ⊂ {(x, u) ∈ K ×K : y /∈B(x, u)} and (xα, uα) → (x0, u0) ∈ K ×K.
If y /∈A(x0), then y /∈B(x0, u0) and hence

(x0, u0) ∈
{
(x, u) ∈ K ×K : y /∈B(x, u)

}
. (2.25)

If y ∈ A(x0) and there exists zα ∈ A(xα) such that

f(uα, zα) ∩ C
(
y
)
/= ∅. (2.26)

Take pα ∈ f(uα, zα) ∩ C(y). By (1) and Lemma 1.3, A(K) =
⋃

x∈K A(x) is compact and hence
{zα} ⊂ A(K) has a cluster point z0 ∈ A(K). We may assume that zα → z0 and so z0 ∈ A(x0).
Similarly, by (4), {pα} has a cluster point p0. We assume that pα → p0 and hence p0 ∈ f(u0, z0).
Since C(y) closed, p0 ∈ C(y). Thus, f(u0, z0) ∩ C(y)/= ∅, y /∈B(x0, u0), and (x0, u0) ∈ {(x, u) ∈
K ×K : y /∈B(x, u)}. Hence, {(x, u) ∈ K ×K : y /∈B(x, u)} is closed. Let a net

{(xα, uα)} ⊂ {
(x, u) ∈ K ×K : v /∈ g(x)

}
(2.27)
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and (xα, uα) → (x0, u0) ∈ K×K, then v /∈ g(xα). By (3), we have v /∈ g(x0), and hence {(x, u) ∈
K ×K : v /∈ g(x)} is closed. Thus, (K ×K) \ F−1(y, v) is closed and so F−1(y, v) is open.

(V) The UGIVEP has a solution. By Lemma 1.6, F has a fixed point. Thus, there exists
(x∗, u∗) ∈ K×K such that (x∗, u∗) ∈ F(x∗, u∗) = B(x∗, u∗)×g(x∗), that is, x∗ ∈ K and u∗ ∈ g(x∗)
such that x∗ ∈ A(x∗) and

f
(
u∗, y

) ∩ C(x∗) = ∅, ∀y ∈ A(x∗). (2.28)

This completes the proof.
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