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1. Introduction

We study a bifurcation problem for the semilinear operator equation

Lx + λ
(
h(x) + k(x)

)
= 0 (1.1)

inΩ× [0,+∞), whereΩ is an open subset of a Banach space E, L : E → F is a linear Fredholm
operator of index zero between real Banach spaces, and the maps h : Ω → F and k : Ω → F
are of class C1 and continuous, respectively. In addition, we assume that, for any nonnegative
real λ, the map x �→ Lx + λh(x) is a nonlinear Fredholm map of index zero.

The set of trivial solutions of (1.1) is obtained when λ = 0. It coincides with (Ω∩KerL)×
{0}, which, we suppose nonempty. One of the problems related to (1.1) is to establish under
which conditions the set of nontrivial solutions is not empty, and to determine topological
properties of this set. One of them is the existence of a bifurcation point, that is, a point p in
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Ω ∩ KerL such that (p, 0) lies in the closure of the set of nontrivial solutions. The related
bifurcation theory is sometimes called cobifurcation [1] or atypical bifurcation [2].

Independently, Furi and Pera [1] and Martelli [3] have studied an unperturbed
equation of the form

Lx + λh(x) = 0, (1.2)

with L as in (1.1) and h : Ω → F being compact. These authors proved the existence of
a connected bifurcating branch of nontrivial solutions of (1.2) that is either unbounded or
whose closure contains at least two bifurcation points. More recently, an analogous result has
been obtained by Benevieri et al. in [4] by removing the compactness assumption on h, but
requiring that such a map is of class C1. Their proof is based on a degree theory developed in
[5] for the class of Fredholm maps of index zero.

A further extension has been obtained by Benevieri and Furi in [6]. They studied (1.1)
assuming that the map h is C1 and the perturbation k is locally compact. To tackle this type
of problem, they applied a topological degree theory for the class of compact perturbations
of nonlinear Fredholm maps (quasi-Fredholm maps in short), which is introduced in [6] and
generalizes that given in [5].

In this paper, we extend the domain of investigation of (1.1) by replacing the
compactness assumption on the perturbation k with a suitable condition given in terms
of measure of noncompactness. Roughly speaking, we suppose that the noncompactness
of k is small with respect to a numerical characteristic depending on L and h. Under
this assumption, in Theorem 5.3 below we prove the existence of a connected bifurcating
branch of nontrivial solutions of (1.1) as in [4]. The technique used here is based on a
topological degree theory introduced in [7] (see also [8–10]) for a special class of noncompact
perturbations of Fredholm maps, called α-Fredholm maps. Such a theory extends that defined
in [6] (we recall that any quasi-Fredholm map is also α-Fredholm), and agrees with the
Nussbaum degree for the class of locally α-contractive vector fields (see [11]).

Our investigation falls into the research field of continuation results, which goes back
to Leray and Schauder and has been widely investigated by many authors. An accurate
presentation of this type of problems is due to Mawhin (see, e.g., [12–14] and the references
therein).

Concerning the organization of the paper, in Section 2 we recall first the notion
(introduced in [5, 15]) of orientability for nonlinear Fredholm maps. Then, following [6],
we extend the notion of orientability to quasi-Fredholm maps. This concept is crucial in the
definition of the degree for quasi-Fredholm maps. Section 3 is devoted to recall the definition
of Kuratowski measure of noncompactness together with some related concepts. In Section 4,
we sketch the construction of the degree for α-Fredholmmaps given in [7]. Section 5 contains
our main result, that is, Theorem 5.3. In Section 6, we give an application to the study of T -
periodic solutions of a boundary value problem depending on a parameter. For this problem,
we obtain a global bifurcation theorem generalizing analogous results in [4, 6].

2. Orientability and degree for quasi-Fredholm maps

In this section, we recall the definition of quasi-Fredholm maps between Banach spaces,
introduced in [6], and we summarize the notions of orientability and degree for this class
of maps.

Throughout the paper, E and F will denote two real Banach spaces. The space of
bounded linear operators from E to F will be denoted by L(E, F), and Φ0(E, F) will be the
open subset of Fredholm operators of index zero.
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Consider an operator L ∈ Φ0(E, F). A bounded linear operator A : E → F with finite
dimensional image is called a corrector of L if L + A is an isomorphism. On the (nonempty)
set C(L) of correctors of L, we define an equivalence relation as follows. Let A,B ∈ C(L) be
given and consider the following automorphism of E:

T = (L + B)−1(L +A) = I − (L + B)−1(B −A). (2.1)

The image of I − T has of course finite dimension. Hence, given any nontrivial
finite dimensional subspace E0 of E containing Im(I − T), the restriction of T to E0 is an
automorphism. Therefore, its determinant is nonzero and independent of the choice of E0.
Denote by det T this common value. We say that A is equivalent to B if

det
(
(L + B)−1(L +A)

)
> 0. (2.2)

As shown in [5], this is actually an equivalence relation on C(L)with two equivalence
classes.

Definition 2.1. Let L ∈ Φ0(E, F) be given. An orientation of L is the choice of one of the two
classes of C(L), and L is orientedwhen an orientation is chosen.

Given an oriented operator L, the elements of its orientation are called positive correctors
of L.

Since the set of the isomorphisms of E into F is open in L(E, F), a corrector of L ∈
Φ0(E, F) is a corrector of every operator in Φ0(E, F) close enough to L. This allows us to give
the following definition.

Definition 2.2. Let X be a topological space and h : X → Φ0(E, F) a continuous map. An
orientation of h is a choice of an orientation O(x) of h(x) for each x ∈ X, such that for any
x ∈ X there existsA ∈ O(x)which is a positive corrector of h(x′) for any x′ in a neighborhood
of x. A map is orientable if it admits an orientation and orientedwhen an orientation is chosen.

Remark 2.3. With an abuse of terminology, we can say that if a map h is oriented, the
orientation O(x) of h(x) depends continuously on x.

By Definition 2.2, we can give a notion of orientability for Fredholm maps of index
zero between Banach spaces. Recall that, given an open subset Ω of E, a C1 map g : Ω → F
is Fredholm of index n if its Fréchet derivative (g ′(x)) is a Fredholm operator of index n for all
x ∈ Ω.

Definition 2.4. An orientation of a Fredholm map of index zero g : Ω → F is an orientation
of the continuous map g ′ : x �→ g ′(x), and g is orientable, or oriented, if so is g ′ according to
Definition 2.2.

The notion of orientability of Fredholm maps of index zero is accurately discussed in
[5, 15]. Here, we only recall a property (Theorem 2.6 below) which is a sort of continuous
transport of an orientation along a homotopy of Fredholm maps. We need first the following
definition.
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Definition 2.5. Let H : Ω × [0, 1] → F be a C1 homotopy. Assume that any partial map Hλ =
H(·, λ) is Fredholm of index zero. An orientation of H is an orientation of the derivative with
respect to the first variable

∂1H : Ω × [0, 1] −→ Φ0(E, F), ∂1H(x, λ) =
(
Hλ

)′(x); (2.3)

H is orientable, or oriented, if so is ∂1H according to Definition 2.2.

Theorem 2.6. Let H : Ω × [0, 1] → F be C1 and assume that any Hλ is a Fredholm map of index
zero. Suppose that, for some λ ∈ [0, 1], the partial mapHλ is oriented and callO its orientation. Then,
there exists a unique orientation of H, say β, such that β(x, λ) = O(x) for any x ∈ Ω.

In the next remark, we show how the orientation of a Fredholm map g is related to
the orientations of domain and codomain of suitable restrictions of g. This property plays an
important role in the proof of our main result (Theorem 5.3 below).

Remark 2.7. Let g : Ω → F be an oriented map and Z a finite dimensional subspace of F,
transverse to g. By classical transversality results, M = g−1(Z) is a C1 manifold of the same
dimension as Z. Let Z be oriented. Consider x ∈ M and a positive corrector A of g ′(x) with
image contained in Z. Then, orient TxM in such a way that the isomorphism

(
g ′(x) +A

)|TxM : TxM −→ Z (2.4)

is orientation-preserving. As proved in [5] (see in particular Remark 2.5 and Lemma 3.1 of
that work), the orientation of TxM does not depend on the choice of the correctorA, but only
on the orientations of Z and g ′(x). Moreover, such an orientation depends continuously on
x; that is, it defines an orientation on M. We will call M the oriented g-preimage of Z.

We are now ready to recall the concepts of orientability and degree for quasi-Fredholm
maps, defined in [6].

Definition 2.8. Let Ω be an open subset of E, g : Ω → F a Fredholm map of index zero, and
k : Ω → F a locally compact map. The map f : Ω → F, defined by f = g − k, is called a
quasi-Fredholm map and g is a smoothing map of f .

Definition 2.9. A quasi-Fredholm map f : Ω → F is orientable if it has an orientable smoothing
map. If f is orientable, an orientation of f is the choice of an orientation of any of its smoothing
maps.

The above definition is well posed because, as shown in [6], if f is an orientable quasi-
Fredholm map, the following facts hold:

(i) any smoothing map of f is orientable;

(ii) an orientation of a smoothing map f determines uniquely an orientation of any
other smoothing map.

In the sequel, if f is oriented and g is an oriented smoothing map that determines the
orientation of f , one will refer to g as a positively oriented smoothing map of f .

Let us now give a sketch of the construction of the degree.
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Definition 2.10. Let f : Ω → F be an oriented quasi-Fredholm map and U an open subset of
Ω. The triple (f,U, 0) is said to be qF-admissible provided that f−1(0) ∩U is compact.

The degree for qF-admissible triples could be defined in two steps. In the first one, the
degree is defined for a triple (f,U, y) such that f has a smoothing map g with (f − g)(U)
contained in a finite dimensional subspace of F. Then, we remove this assumption, and the
degree is given for all qF-admissible triples.

Let (f,U, 0) be a qF-admissible triple, and let g be a positively oriented smoothing map
of f such that (f − g)(U) is contained in a finite dimensional subspace of F. As f−1(0) ∩ U
is compact, let Z be a finite dimensional subspace of F, and let W be an open neighborhood
of f−1(0) in U such that g is transverse to Z in W . Assume that Z is oriented and contains
(f − g)(U). Let M = g−1(Z) ∩W be the oriented g|W -preimage of Z.

One can easily verify that (f |M)−1(0) = f−1(0) ∩ U. Thus, (f |M)−1(0) is compact, and
the Brouwer degree of the triple (f |M,M, 0) is well defined. Then, the degree of (f,U, 0) is
defined as

degqF(f,U, 0) = degB
(
f |M,M, 0

)
, (2.5)

where the right-hand side is the Brouwer degree of the triple (f |M,M, 0). As proved in [6],
this definition is well posed since the right-hand side of (2.5) is independent of the choice of
the smoothing map g, the open set W , and the subspace Z.

To define the degree of a general qF-admissible triple (f,U, 0), take a positively
oriented smoothing map g of f and a continuous map ξ, with finite dimensional image close
enough to f − g in a suitable neighborhood V of f−1(0) ∩U. The degree of (f,U, 0) is

degqF(f,U, 0) = degqF(g − ξ, V, 0). (2.6)

The reader can find in [6] the details of the construction and the properties verified by
the degree.

3. Measures of noncompactness

In this section, we recall the definition of the Kuratowski measure of noncompactness
together with some related concepts. For general reference, see, for example, [16] or [17].

From now on, the Banach spaces E and F are assumed to be infinite dimensional.
The Kuratowski measure of noncompactness α(A) of a bounded subset A of E is defined

as the infimum of real numbers d > 0 such that A admits finite covering by sets of diameter
less than d. If A is unbounded, we set α(A) = +∞.

Given an open subsetΩ of E and a continuous map f : Ω → F, we recall the definition
of the following two extended real numbers (see, e.g., [18]) associated with the map f :

α(f) = sup
{
α
(
f(A)

)

α(A)
: A ⊆ Ω bounded, α(A) > 0

}
,

ω(f) = inf
{
α
(
f(A)

)

α(A)
: A ⊆ Ω bounded, α(A) > 0

}
.

(3.1)

We point out that α(f) = 0 if and only if f is completely continuous, and ω(f) > 0
only if f is proper on bounded closed sets. For a comprehensive list of properties of α(f) and
ω(f), we refer to [18]. Here, we recall the following one concerning linear operators.
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Proposition 3.1. Let L : E → F be a bounded linear operator. Then, ω(L) > 0 if and only if ImL is
closed and dimKerL < +∞.

Let p ∈ Ω be fixed. We recall the definitions of αp(f) and ωp(f) given in [9] (see also
[10]). Roughly speaking, these numbers are the local analogues of α(f) and ω(f).

Let B(p, s) denote the open ball in E centered at p with radius s > 0. Suppose that
B(p, s) ⊆ Ω and consider the number

α
(
f |B(p,s)

)
= sup

{
α
(
f(A)

)

α(A)
: A ⊆ B(p, s), α(A) > 0

}
, (3.2)

which is nondecreasing as a function of s. Hence, we can define

αp(f) = lim
s→0

α
(
f |B(p,s)

)
. (3.3)

Clearly, αp(f) ≤ α(f). Analogously, define

ωp(f) = lim
s→0

ω
(
f |B(p,s)

)
. (3.4)

Obviously, ωp(f) ≥ ω(f).
With only minor changes, it is easy to show that the main properties of α and ω hold

for αp and ωp as well. In fact, the following proposition holds.

Proposition 3.2 (see [9]). Let f : Ω → F be continuous and p ∈ Ω. Then,

(i) |αp(f) − αp(g)| ≤ αp(f + g) ≤ αp(f) + αp(g);

(ii) ωp(f) − αp(g) ≤ ωp(f + g) ≤ ωp(f) + αp(g);

(iii) if f is locally compact, αp(f) = 0;

(iv) if ωp(f) > 0, f is locally proper at p;

(v) if f is a local homeomorphism and ωp(f) > 0, αq(f−1)ωp(f) = 1, where q = f(p).

Clearly, for a bounded linear operator L : E → F, the numbers αp(L) and ωp(L) do not
depend on the point p and coincide, respectively, with α(L) and ω(L). Furthermore, for the
C1 case the following result holds.

Proposition 3.3 (see [9]). Let f : Ω → F be of class C1. Then, for any p ∈ Ω, one has αp(f) =
α(f ′(p)) and ωp(f) = ω(f ′(p)).

If f : Ω → F is a Fredholm map, as a straightforward consequence of Propositions 3.1
and 3.3, we obtain ωp(f) > 0 for any p ∈ Ω.

The next property of bounded linear operators is useful for a direct computation of α
and ω.

Proposition 3.4. Let L : E → F be a bounded linear operator, and let P : E → E and Q : F → F be
two projectors onto finite codimensional subspaces. Then,

α(L) = α(QLP), ω(L) = ω(QLP). (3.5)



P. Benevieri and A. Calamai 7

Proof. We have, for instance, L = QL + (I − Q)L. Observe that the operator (I − Q)L is
compact since its image is finite dimensional. Thus, α((I − Q)L) = 0. Hence, by property
(1) in Proposition 3.2, we have α(L) = α(QL). In an analogous way, one can easily check that
α(L) = α(QLP) and ω(L) = ω(QLP).

The next proposition, which will be used in the sequel, is a sort of nonlinear analogue
of Proposition 3.4.

Proposition 3.5. Let f : Ω → F be continuous and p ∈ Ω. LetQ : F → F be a projector onto a finite
codimensional subspace. Then,

αp(f) = αp(Qf), ωp(f) = ωp(Qf). (3.6)

Proof. We have f = Qf + (I − Q)f . Note that αp((I − Q)f) = 0 since the map (I − Q)f is
compact. Thus, from properties (1) and (2) in Proposition 3.2, it follows that αp(f) = αp(Qf)
and ωp(f) = ωp(Qf).

The following proposition, whose proof can be found in [8, Proposition 4.5], extends
to the continuous case an analogous result shown in [9] for C1 maps.

Proposition 3.6. Let g : Ω → F and σ : Ω → R be continuous. Consider the product map f :
Ω → F defined by f(x) = σ(x)g(x). Then, for any p ∈ Ω, one has αp(f) = |σ(p)|αp(g) and
ωp(f) = |σ(p)|ωp(g).

In the sequel, we will consider also maps G defined on the product space E × R. In
order to define α(p,λ)(G), we consider the norm

∥∥(p, λ)
∥∥ = max

{‖p‖, |λ|}. (3.7)

The natural projection of E × R onto the first factor will be denoted by π1.

Remark 3.7. With the above norm, π1 is nonexpansive. Therefore, α(π1(X)) ≤ α(X) for any
subset X of E × R. More precisely, since R is finite dimensional, if X ⊆ E × R is bounded, we
have α(π1(X)) = α(X).

We conclude the section with the following technical result, which is a straightforward
consequence of Proposition 3.6 and which will be useful in the sequel.

Corollary 3.8. Given a continuous map ϕ : Ω → F, consider the map

Φ : Ω × [0, 1] −→ F, Φ(x, λ) = λϕ(x). (3.8)

Then, for any fixed pair (p, λ) ∈ Ω × [0, 1], one has

α(p,λ)(Φ) = λαp(ϕ). (3.9)

4. Degree for α-Fredholm maps

In this section, we sketch the construction of the degree for α-Fredholm maps. The interested
reader can find the details in [7].
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The α-Fredholm maps are special noncompact perturbations of Fredholm maps,
defined in terms of the numbers αp and ωp. Precisely, an α-Fredholm map f : Ω → F is of the
form f = g − k, where g is a Fredholm map of index zero, k is continuous, and αp(k) < ωp(g)
for every p.

The degree is given as an integer-valued map defined on a class of triples that we will
call admissible α-Fredholm triples. This class is recalled in the following two definitions.

Definition 4.1. Let g : Ω → F be a Fredholm map of index zero, k : Ω → F a continuous map,
and U an open subset of Ω. The triple (g,U, k) is said to be α-Fredholm if for any p ∈ U one
has

αp(k) < ωp(g). (4.1)

Definition 4.2. An α-Fredholm triple (g,U, k) is said to be admissible if

(i) g is oriented;

(ii) the solution set S = {x ∈ U : g(x) = k(x)} is compact.

Let (g,U, k) be an admissible α-Fredholm triple. Given a finite covering V =
{V1, . . . , VN} of open balls of S and a compact convex set C, with S ⊆ C ⊆ U, the pair (V, C) is
called an α-pair relative to (g,U, k) if, for any i = 1, . . . ,N, the following conditions hold:

(1) the ball Ṽi of double radius and same center as Vi is contained in U;

(2) α(k|Ṽi
) < ω(g|Ṽi

);

(3) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C)} ⊆ C.

In [7], it is shown that, given any admissible α-Fredholm triple, it is always possible
to find a relative α-pair.

Let (V, C) be an α-pair relative to (g,U, k). Denote V =
⋃N

i=1Vi and consider a retraction
r : E → C, whose existence is ensured by Dugundji’s extension theorem (see, e.g., [19]).

Let W be an open subset of V containing S such that, for any i, x ∈ W ∩ Vi implies
r(x) ∈ Ṽi. Notice that the triple (g − kr,W, 0) is qF-admissible (recall Definition 2.10). The
degree of the triple (g,U, k) is

deg(g,U, k) = degqF(g − kr,W, 0), (4.2)

where the right-hand side is the degree for quasi-Fredholm maps, seen in Section 2. In
addition, we show in [7] that the right-hand side of the above equality is independent of
the choice of the α-pair (V, C), of the retraction r, and of the open set W .

As pointed out in [7], this concept of degree extends the degree for quasi-Fredholm
maps, and it agrees with the Nussbaum degree for the class of locally α-contractive vector
fields (see [11]).

Below we state the most important properties of the degree. Actually, in [7] only
the fundamental properties (i.e., normalization, additivity, and homotopy invariance) were
stated and proved. The excision and existence properties are easy consequences of the
additivity.

Let us introduce the following concept of α-Fredholm homotopy.
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Definition 4.3. Let W be an open subset of E × [0, 1] and H : W → F a continuous map of the
form

H(x, λ) = G(x, λ) −K(x, λ). (4.3)

The map H is said to be an α-Fredholm homotopy if the following conditions hold:

(i) G is C1;

(ii) for any λ ∈ [0, 1] the partial map Gλ is Fredholm of index zero on the section Wλ =
{x ∈ E : (x, λ) ∈ W};

(iii) for any pair (p, λ) ∈ W one has α(p,λ)(K) < ω(p,λ)(G).

Theorem 4.4. The following properties hold.

(1) Normalization. Let the identity I of E be oriented in such a way that the trivial operator is
a positive corrector. Then,

deg(I, E, 0) = 1. (4.4)

(2) Additivity. Given an admissible α-Fredholm triple (g,U, k) and two disjoint open subsets
U1,U2 of U, assume that S = {x ∈ U : g(x) = k(x)} is contained inU1 ∪U2. Then,

deg(g,U, k) = deg
(
g,U1, k

)
+ deg

(
g,U2, k

)
. (4.5)

(3) Excision. Given an admissible α-Fredholm triple (g,U, k) and an open subset U1 of U,
assume that S is contained inU1. Then,

deg(g,U, k) = deg
(
g,U1, k

)
. (4.6)

(4) Existence. Given an admissible α-Fredholm triple (g,U, k), if

deg(g,U, k)/= 0, (4.7)

then the equation g(x) = k(x) has a solution in U.

(5) Homotopy invariance. LetW be an open subset of E×[0, 1] andH : W → F an α-Fredholm
homotopy of the form H(x, λ) = G(x, λ) − K(x, λ). Assume that G is oriented and that
the set H−1(0) is compact. Then, deg(Gλ,Wλ,Kλ) is well defined and does not depend on
λ ∈ [0, 1].

5. Nonlinear bifurcation results

In this section, we consider the semilinear operator equation

Lx + λ
(
h(x) + k(x)

)
= 0 (5.1)

in Ω × [0,+∞), where L : E → F is a linear Fredholm operator of index zero between real
Banach spaces, and the maps h : Ω → F and k : Ω → F are C1 and continuous, respectively.
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Equation (5.1) can be equivalently written as

H(x, λ) = 0, (5.2)

where

H : Ω × [0,+∞) −→ F, H(x, λ) = Lx + λ
(
h(x) + k(x)

)
. (5.3)

This map is of the form

H(x, λ) = G(x, λ) −K(x, λ), (5.4)

where G(x, λ) = Lx + λh(x) is of class C1 and K(x, λ) = −λk(x). We will suppose that the
following conditions hold:

(H1) for any λ ≥ 0, the partial map Gλ is Fredholm of index zero;

(H2) for any pair (p, λ) ∈ Ω × [0,+∞), we have α(p,λ)(K) < ω(p,λ)(G).

Thus, the map H is an α-Fredholm homotopy (see Definition 4.3).
By a solution of (5.1), we mean a pair (x, λ) ∈ H−1(0) and we regard the distinguished

subset (Ω ∩ KerL) × {0} of H−1(0) as the set of trivial solutions of (5.1).
A problem related to (5.1) is that of the existence of a (atypical) bifurcation point (in the

terminology of Prodi-Ambrosetti in [2]), that is, a point p in Ω ∩ KerL such that (p, 0) lies in
the closure of the set of nontrivial solutions (i.e., of the pairs (x, λ) ∈ H−1(0) with λ/= 0).

In a recent paper, Benevieri et al. (see [4]) obtained a global bifurcation result for (5.1)
in the particular case when k = 0. Afterwards, the result in [4] was extended by the first two
authors (see [6]) by introducing a locally compact perturbation k. In that case, the map H as
in formula (5.4) is such that each H(·, λ) is a quasi-Fredholm map.

Theorem 5.3 below is a further extension of the result in [6], by considering a possibly
noncompact perturbation k. The compactness assumption of k is replaced by condition (H2)
above, which is clearly satisfied when k (and thus K) is locally compact. The proof follows
some ideas in [4]. Let us stress that our argument is based on the degree for α-Fredholm
maps.

Let F1 be any fixed (finite dimensional) direct summand of ImL in F. We consider the
decomposition F = ImL⊕F1, and we denote by R and π the associated projections onto ImL
and F1, respectively.

Equation (5.1) is clearly equivalent to the system

Lx + λ
(
Rh(x) + Rk(x)

)
= 0,

λ
(
πh(x) + πk(x)

)
= 0.

(5.5)

In order to investigate the set of nontrivial solutions of (5.5), it is convenient to consider the
system

Lx + λ
(
Rh(x) + Rk(x)

)
= 0,

πh(x) + πk(x) = 0
(5.6)

which is equivalent to (5.5) for λ/= 0.
The next result provides a necessary condition for p ∈ Ω ∩ KerL to be a bifurcation

point. The easy proof, which is based on a simple continuity argument, is given for
completeness.
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Theorem 5.1. Assume that p is a bifurcation point for (5.1). Then, h(p) + k(p) ∈ ImL or,
equivalently, πh(p) + πk(p) = 0.

Proof. Since p is a bifurcation point, there exists a sequence {(λn, xn)} of nontrivial solutions
of (5.1) converging to (0, p). Hence, (λn, xn) is a solution of the system (5.6) for any n, and the
result follows from the continuity of the maps πh and πk.

Our main result, Theorem 5.3 below, is the analogue of [4, Theorem 3.2], and provides
a sufficient condition for the existence of a bifurcation point. The fundamental tools for
proving Theorem 5.3 are the homotopy invariance property of the degree for α-Fredholm
maps (as in Theorem 4.4), together with the following crucial lemma, whose proof can be
found in [20].

Lemma 5.2. Let Z be a compact subset of a locally compact metric spaceX. Assume that any compact
subset ofX containing Z has nonempty boundary. Then,X \Z contains a connected set whose closure
is not compact and intersects Z.

We are now ready to state our main result. The statement involves the Brouwer degree
of a map between KerL and F1. Therefore, these spaces should be oriented. However, the
result is independent of the chosen orientations.

As in Section 4, given an open subset W of Ω × [0,+∞), by Wλ we denote the section
{x ∈ Ω : (x, λ) ∈ W}.

Theorem 5.3. LetH : Ω× [0,+∞) → F be defined byH(x, λ) = Lx + λ(h(x) + k(x)), and suppose
that conditions (H1) and (H2) above hold. Assume in addition that the map G : Ω × [0,+∞) → F,
defined by G(x, λ) = Lx + λh(x), is oriented.

Let v : Ω ∩ KerL → F1 be defined by v(p) = πh(p) + πk(p). Let W be an open subset
of Ω × [0,+∞), and suppose that the Brouwer degree degB(v,W0 ∩ KerL, 0) is well defined and
nonzero. Then, there exists in W a connected set of nontrivial solutions of (5.1) whose closure in W
is not compact and intersects KerL × {0}.

Proof. Notice that, as a consequence of conditions (H1) and (H2), themapH is an α-Fredholm
homotopy of the formH(x, λ) = G(x, λ) −K(x, λ).

Let Ĥ : W → F = ImL ⊕ F1 be defined by

Ĥ(x, λ) = Lx + λ
(
Rh(x) + Rk(x)

)
+ πh(x) + πk(x). (5.7)

This map is clearly an α-Fredholm homotopy which can be written as Ĥ = Ĝ − K̂, where

Ĝ(x, λ) = Lx + λRh(x) + πh(x) (5.8)

is of class C1 and oriented (with orientation induced by G according to Theorem 2.6), and
K̂(x, λ) = −λRk(x) − πk(x). In fact, since RG = RĜ and RK = RK̂, by Proposition 3.5 we get

α(p,λ)
(
K̂
)
= α(p,λ)(K), ω(p,λ)

(
Ĝ
)
= ω(p,λ)(G) (5.9)

for any pair (p, λ) ∈ W . Thus, α(p,λ)(K̂) < ω(p,λ)(Ĝ) for any (p, λ) ∈ W .
Let now

Y =
{
(x, λ) ∈ W : Ĥ(x, λ) = 0

}
. (5.10)
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Notice that the set Y is locally compact. Indeed, the map Ĥ is locally proper at any (p, λ) ∈ W

since α(p,λ)(K̂) < ω(p,λ)(Ĝ). Moreover, Y0 = v−1(0) ∩W0 is compact because we assumed that
degB(v,W0 ∩ KerL, 0) is well defined.

We apply Lemma 5.2 with Y0 ×{0} in place of Z, and with Y in place of X. Assume, by
contradiction, that there exists a compact set Y ′ ⊆ Y containing Y0×{0}with empty boundary
in Y . Thus, Y ′ is also an open subset of Y . Hence, there exists a bounded open subsetU ofW
such that Y ′ = U ∩ Y . Since Y ′ is compact, the homotopy invariance property of the degree
(see Theorem 4.4) implies that deg(Ĝλ,Uλ, K̂λ) does not depend on λ ≥ 0. Moreover, the slice
Y ′
λ
= Uλ ∩ Yλ is empty for some positive λ. This implies that deg(Ĝλ,Uλ, K̂λ) = 0 for any

λ ∈ [0,+∞) and, in particular, deg(Ĝ0, U0, K̂0) = 0. The inclusions v−1(0) ∩ W0 ⊆ U0 ⊆ W0

imply, using the excision property of the degree, that deg(Ĝ0,W0, K̂0) = 0.
Now, observe that the map Ĥ0 = Ĝ0 − K̂0, which is given by

Ĥ0(x) = Lx + πh(x) + πk(x), (5.11)

is actually an oriented quasi-Fredholm map (with Ĝ, and thus Ĝ0, being oriented). Conse-
quently, we get

0 = deg
(
Ĝ0,W0, K̂0

)
= degqF

(
Ĥ0,W0, 0

)
. (5.12)

The subspace F1 contains the image of K̂0 and is transverse to Ĝ0 being transverse to
L. Moreover, Ĥ−1

0 (F1) = Ĝ−1
0 (F1) = W0 ∩ KerL. Suppose F1. Without loss of generality, we

assume thatW0 ∩KerL is oriented in such a way that it becomes the oriented Ĝ0-preimage of
F1. Hence, by definition of degree for quasi-Fredholm maps (see formula (2.5)), we obtain

degqF
(
Ĥ0,W0, 0

)
= degB

(
v,W0 ∩ KerL, 0

)
/= 0, (5.13)

which contradicts equality (5.12).
Therefore, because of Lemma 5.2, there exists a connected subset of Y whose closure

in Y intersects Y0 × {0} and is not compact. This completes the proof.

The next consequences of Theorem 5.3 and Corollaries 5.4 and 5.5 below extend
analogous results in [4]. The proofs are given for the reader’s convenience.

Corollary 5.4. Let the assumptions of Theorem 5.3 be satisfied. Suppose, moreover, that the map H
is proper on bounded and closed subsets of W . Then, (5.1) admits a connected set Γ of nontrivial
solutions such that its closure in E × [0,+∞) intersects KerL × {0} and is either unbounded or
reaches the boundary of W . If, in particular, Ω = E and W = E × [0,+∞), then Γ is unbounded.

Proof. Let Γ denote the closure in E × [0,+∞) of a connected branch Γ as in Theorem 5.3.
Suppose that Γ ∩ ∂W = ∅. Thus, the closure of Γ in W coincides with Γ. Hence, Γ cannot be
bounded since the properness ofH on bounded closed subsets of W implies that the map Ĥ
as in the proof of Theorem 5.3 (see (5.7)) has the same property.

Corollary 5.5. Let W and v be as in Theorem 5.3. Suppose, moreover, that the map H is proper on
bounded and closed subsets of W . Let p ∈ W0 ∩ KerL be such that v(p) = 0, and v′(p) is invertible.
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Then, (5.1) admits a connected set Γ of nontrivial solutions such that its closure contains p and satisfies
at least one of the following three conditions:

(i) it is unbounded;

(ii) it contains a point q ∈ W0 ∩ KerL, q /= p;

(iii) it intersects ∂W .

Proof. The assumptions of v(p) = 0 and invertible v′(p) imply the existence of an open
neighborhood W̃0 of p in W0 such that v−1(0) ∩ W̃0 = {p} and deg(v, W̃0, 0) = ±1. Now
apply Corollary 5.4 with the set W̃ = (W̃0 × {0}) ∪ {(x, λ) ∈ W : λ/= 0} in place ofW . Observe
that W̃ is open, being obtained from W by removing the closed subset {(x, 0) ∈ W : x/∈W̃0},
and that the boundary of W̃ (in E × [0,+∞)) coincides with the boundary of W̃ as a subset of
E × R except for W̃0 × {0}.

6. Applications

In this section, we provide an application of the bifurcation results obtained in Section 5 to
the following boundary value problem depending on a parameter λ ≥ 0:

x′(t) + λφ
(
t, x(t), x′(t)

)
+ λψ

(
t, x(t), x′(t)

)
= 0,

x(0) = x(T),
(6.1)

where φ : R × R
n × R

n → R
n is C1 and ψ : R × R

n × R
n → R

n is continuous. We suppose
that φ and ψ are T -periodic with respect to the first variable. Under additional assumptions,
to be specified in the sequel, we obtain a global bifurcation result for T -periodic solutions of
problem (6.1).

Our first step consists in presenting an example of an α-Fredholm homotopy. Let us
fix some notation. We denote by C0 the Banach space C([0, T],Rn) endowed with the usual
supremum norm

‖x‖∞ = max
t∈[0,T]

∣∣x(t)
∣∣, x ∈ C0, (6.2)

where |·| denotes the Euclidean norm in R
n, and by C1 the space C1([0, T],Rn) endowed with

the norm

‖x‖1 = max
{∥∥x′∥∥

∞,
∣∣x(0)

∣∣}, x ∈ C1. (6.3)

We endow the product space C0 × R
n with the norm

∥∥(y, r)
∥∥ = max

{‖y‖∞, |r|
}
, (y, r) ∈ C0 × R

n. (6.4)

Given an n × n matrix M, we denote its norm by ‖M‖.
For simplicity, we will consider φ and ψ defined just on [0, T] × R

n × R
n.

Define

Φ : C1 −→ C0, Φ(x)(t) = φ
(
t, x(t), x′(t)

)
, t ∈ [0, T],

Ψ : C1 −→ C0, Ψ(x)(t) = ψ
(
t, x(t), x′(t)

)
, t ∈ [0, T],

(6.5)
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and set

G : C1 × [0,+∞) −→ C0 × R
n, G(x, λ) =

(
x′ + λΦ(x), x(0) − x(T)

)
,

K : C1 × [0,+∞) −→ C0 × R
n, K(x, λ) = −λ(Ψ(x), 0

)
.

(6.6)

It is convenient to write G(x, λ) = (G̃(x, λ), x(0) − x(T)), where

G̃(x, λ) = x′ + λΦ(x). (6.7)

That is,

G̃(x, λ)(t) = x′(t) + λφ
(
t, x(t), x′(t)

)
, t ∈ [0, T]. (6.8)

The map G is C1 (since so is φ) and the Fréchet derivative G′
λ(x) : C1 → C0 ×R

n of any partial
map Gλ at any x ∈ C1 is given by

G′
λ(x)q =

(
G̃′

λ(x)q, q(0) − q(T)
)
, (6.9)

where

(
G̃′

λ
(x)q

)
(t) = q′(t) + λ∂2φ

(
t, x(t), x′(t)

)
q(t) + λ∂3φ

(
t, x(t), x′(t)

)
q′(t), t ∈ [0, T] (6.10)

for any q ∈ C1. Here, ∂2φ and ∂3φ denote the Jacobian matrices of φwith respect to the second
and third variables, respectively. In particular, the derivative at any x of G̃λ can be written as

(
G̃′

λ
(x)q

)
(t) =

(
I + λMx(t)

)
q′(t) + λNx(t)q(t), t ∈ [0, T], (6.11)

where, given x ∈ C1, Mx and Nx are n × n matrices of continuous real functions defined in
[0, T] by

Mx(t) = ∂3φ
(
t, x(t), x′(t)

)
, Nx(t) = ∂2φ

(
t, x(t), x′(t)

)
. (6.12)

If x and λ are such that

det
(
I + λMx(t)

)
/= 0 for any t ∈ [0, T], (6.13)

then G′
λ
(x) : C1 → C0 × R

n is a Fredholm operator of index zero. Indeed, it is the sum of
the two compact linear operators q �→ (0,−q(T)) (having finite dimensional image) and q �→
(λNx(·)q(·), 0) (which is compact since so is the inclusionC1 ↪→ C0×R

n)with the isomorphism

C1 −→ C0 × R
n, q �−→ ((

I + λMx(·)
)
q′(·), q(0)). (6.14)

Let us stress that condition (6.13) holds for any pair (x, λ) if we assume that, for every
(t, a, b) ∈ [0, T] × R

n × R
n, the Jacobian matrix ∂3φ(t, a, b) has no negative eigenvalues.

Let us now estimate the local measure of noncompactness of the maps G and K. In
particular, we look for conditions under which a given pair (x, λ) ∈ C1 × [0,+∞) verifies the
inequality

α(x,λ)(K) < ω(x,λ)(G). (6.15)



P. Benevieri and A. Calamai 15

Lemma 6.1. Suppose that ψ is Lipschitz continuous with respect to the third variable; that is, there
exists some c > 0 such that

∣
∣ψ

(
t, a, b1

) − ψ
(
t, a, b2

)∣∣ ≤ c
∣
∣b1 − b2

∣
∣ (6.16)

for any t ∈ [0, T] and any a, b1, b2 ∈ R
n. Then,

α(x,λ)(K) ≤ λc (6.17)

for any pair (x, λ) ∈ C1 × [0,+∞).

Proof. Let (x, λ) ∈ C1 × [0,+∞) be fixed. Since K(x, λ) = −λ(Ψ(x), 0), by Corollary 3.8 we
get α(x,λ)(K) = λαx(Ψ). Moreover, the map Ψ is Lipschitz with constant c. Indeed, given
x1, x2 ∈ C1 and t ∈ [0, T], we have

∣∣Ψ
(
x1
)
(t) −Ψ

(
x2
)
(t)

∣∣ =
∣∣ψ

(
t, x1(t), x′

1(t)
) − ψ

(
t, x2(t), x′

2(t)
)∣∣ ≤ c

∣∣x′
1(t) − x′

2(t)
∣∣, (6.18)

and thus

∥∥Ψ
(
x1
) −Ψ

(
x2
)∥∥

∞ ≤ c
∥∥x′

1 − x′
2

∥∥
∞ ≤ c

∥∥x1 − x2
∥∥
1. (6.19)

It follows that αx(Ψ) ≤ α(Ψ) ≤ c and, consequently, α(x,λ)(K) ≤ λc.

Remark 6.2. The assertion of Lemma 6.1 is still valid when

ψ(t, a, b) = ψ1(t, a, b) + ψ2(t, a), (6.20)

with ψ1 satisfying condition (6.16) and ψ2 being independent of the third variable. In fact, in
this case one can easily check that the map Ψ̃ : C1 → C0, defined by

Ψ̃(x)(t) = ψ1
(
t, x(t), x′(t)

)
+ ψ2

(
t, x(t)

)
, t ∈ [0, T], (6.21)

is α-Lipschitz with constant c, being the sum of an α-Lipschitz map with constant c and a
completely continuous map.

Lemma 6.3. Assume that for any (t, a, b) ∈ [0, T] × R
n × R

n the Jacobian matrix ∂3φ(t, a, b) has no
negative eigenvalues. Set

γ(λ) = sup
(t,a,b)

∥∥(I + λ∂3φ(t, a, b)
)−1∥∥. (6.22)

Then,

ω(x,λ)(G) ≥ 1
γ(λ)

(6.23)

for any pair (x, λ) ∈ C1 × [0,+∞).
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Proof. Let (x, λ) ∈ C1 × [0,+∞) be fixed. First of all, observe that, since G is of class C1,
by Proposition 3.3 we have ω(x,λ)(G) = ω(G′(x, λ)) and, by Proposition 3.4, ω(G′(x, λ)) =
ω(G′

λ
(x)). Hence,

ω(x,λ)(G) = ω
(
G′

λ(x)
)
. (6.24)

As we already pointed out, the assumption on the Jacobian matrix ∂3φ(t, a, b) implies that
condition (6.13) holds for any pair (x, λ) ∈ C1 × [0,+∞). Consequently, G′

λ
(x) is a Fredholm

operator of index zero.
Now, define the linear operator Γ : C1 → C0 × R

n by Γq = (Γ1q, q(0)), where

Γ1q(t) =
(
I + λMx(t)

)
q′(t), t ∈ [0, T]. (6.25)

Since the maps q �→ (0,−q(T)) and q �→ (λNx(·)q(·), 0) are compact, by (2) and (3) in
Proposition 3.2 we have ω(G′

λ
(x)) = ω(Γ). Moreover, condition (6.13) implies that the linear

operator Γ is invertible. Thus, by (5) in Proposition 3.2, we get

ω(Γ) =
1

α
(
Γ−1

) . (6.26)

Let us estimate α(Γ−1). For this purpose, let P : C0 × R
n → C0 × R

n be the natural projection
onto C0 × {0}, defined by (y, r) �→ (y, 0). By Proposition 3.4, we have α(Γ−1) = α(Γ−1P). Now,
fix (y, r) ∈ C0 × R

n and let q ∈ C1 be such that q = Γ−1P(y, r); that is, q is the solution of the
linear problem

q′(t) =
(
I + λMx(t)

)−1
y(t),

q(0) = 0.
(6.27)

We have |q′(t)| ≤ ‖(I + λMx(t))
−1‖ |y(t)| for any t, and thus

∥∥q′
∥∥
∞ ≤ max

t∈[0,T]

∥∥(I + λMx(t)
)−1∥∥ ‖y‖∞ ≤ sup

(t,a,b)

∥∥(I + λ∂3φ(t, a, b)
)−1∥∥∥∥(y, r)

∥∥ = γ(λ)
∥∥(y, r)

∥∥.

(6.28)

Consequently, ‖q‖1 ≤ γ(λ) ‖(y, r)‖. It follows that

α
(
Γ−1

)
= α

(
Γ−1P

) ≤ γ(λ). (6.29)

Hence,

ω(x,λ)(G) = ω(Γ) ≥ 1
γ(λ)

. (6.30)

The next proposition summarizes the above two lemmas. The statement involves the
map

H : C1 × [0,+∞) −→ C0 × R
n, H(x, λ) = G(x, λ) −K(x, λ), (6.31)

where G and K are as in (6.6).
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Proposition 6.4. Let φ : [0, T] × R
n × R

n → R
n be C1 and let ψ : [0, T] × R

n × R
n → R

n be
continuous. Assume that the following conditions hold:

(i) the map ψ is Lipschitz continuous with respect to the third variable with constant c > 0;

(ii) for any (t, a, b) ∈ [0, T] × R
n × R

n, the Jacobian matrix ∂3φ(t, a, b) has no negative
eigenvalues;

(iii) the constant c is such that

λc <
1

γ(λ)
for any λ ∈ [0,+∞), (6.32)

where γ(λ) = sup(t,a,b)‖(I + λ∂3φ(t, a, b))
−1‖.

Then, the map H as in (6.31) is an α-Fredholm homotopy.

As an example illustrating condition (iii) in Proposition 6.4, consider the case in which
for any (t, a, b) the Jacobian matrix ∂3φ(t, a, b) coincides with a diagonal matrix Δ. Suppose
that all the eigenvalues of Δ are positive, and let δ be the smallest one. Thus, one can easily
check that γ(λ) = 1/(1 + λδ), and condition (iii) is clearly satisfied if the Lipschitz constant c
of the map ψ is smaller than δ.

Let us come back to our study of problem (6.1). For technical reasons, define

L : C1 −→ C0 × R
n, Lx =

(
x′, x(0) − x(T)

)
,

h : C1 −→ C0 × R
n, h(x) =

(
Φ(x), 0

)
,

k : C1 −→ C0 × R
n, k(x) =

(
Ψ(x), 0

)
,

(6.33)

withΦ andΨ as in (6.5). Then, problem (6.1) is equivalent to the semilinear operator equation

Lx + λ
(
h(x) + k(x)

)
= 0 (6.34)

in C1 × [0,+∞). Observe that (6.34) can be equivalently written as

H(x, λ) = 0, (6.35)

where the map

H : C1 × [0,+∞) −→ C0 × R
n, H(x, λ) = Lx + λ

(
h(x) + k(x)

)
(6.36)

is the same as in (6.31), with G(x, λ) = Lx + λh(x) and K(x, λ) = −λk(x).
Now, suppose that conditions (i)–(iii) in Proposition 6.4 hold. Hence, by Proposition

6.4, the map H is an α-Fredholm homotopy. Therefore, we can apply the results of Section 5
to (6.34) obtaining a global bifurcation result (see Theorem 6.5 below).

Aswe already pointed out, Benevieri et al. in [4] obtained a global bifurcation result for
(6.34) in the absence of the perturbation k. That is, in [4] they studied a problem analogous
to (6.1) with ψ identically zero. Their result was extended by Benevieri and Furi [6] in the
case when ψ is nonzero and independent of the third variable. Theorem 6.5 below extends
these results, by assuming ψ to be Lipschitz continuous with respect to the third variable,
with suitably small Lipschitz constant.
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Before stating Theorem 6.5, we need some preliminary remarks. First, to avoid
cumbersome notation, any point p ∈ R

n is identified with the constant function t �→ p so
that R

n can be regarded as the set of trivial solutions of problem (6.1).
Now, it is not difficult to show that the operator L is Fredholm of index zero, with

KerL = R
n and

ImL =
{
(y, r) ∈ C0 × R

n : r = −
∫T

0
y(t)dt

}
. (6.37)

The reader can easily verify that C0 × R
n = ImL ⊕ F1, where F1 is an n-dimensional subspace

of C0 × R
n which can be identified with R

n. In fact, observe that any pair (y, r) ∈ C0 × R
n can

be uniquely decomposed as

(y, r) =
(
y,−

∫T

0
y(t)dt

)
+
(
0, r +

∫T

0
y(t)dt

)
. (6.38)

Moreover, the projection π of C0 × R
n onto F1 = R

n can be written as

π(y, r) = r +
∫T

0
y(t)dt. (6.39)

Thus, the vector field v : R
n → R

n, defined by v(p) = πh(p) + πk(p), can be written as

v(p) =
∫T

0

(
φ(t, p, 0) + ψ(t, p, 0)

)
dt. (6.40)

We are now ready to state the main result of this section. The statement involves,
instead of v, the mean value vector field w : R

n → R
n defined by

w(p) =
1
T

∫T

0

(
φ(t, p, 0) + ψ(t, p, 0)

)
dt. (6.41)

Theorem 6.5. Let φ : [0, T]×R
n×R

n → R
n be C1, and let ψ : [0, T]×R

n×R
n → R

n be continuous;
suppose that conditions (i)–(iii) in Proposition 6.4 hold.

Let w : R
n → R

n be the mean value vector field defined in (6.41). Let W be an open subset
of C1 × [0,+∞) and denote W̃0 = {p ∈ R

n : (p, 0) ∈ W}. Assume that the Brouwer degree
degB(w, W̃0, 0) is defined and is different from zero. Then, W contains a connected set of nontrivial
solutions of problem (6.1), whose closure inW is not compact and intersects KerL × {0} ∼= R

n in the
compact setw−1(0) ∩ W̃0.

Proof. Clearly, degB(w, W̃0, 0) is defined and is different from zero if and only if the same is
true for degB(v, W̃0, 0). To apply Theorem 5.3, we need the orientability of the map G defined
in (6.6). This is a consequence of the fact, proved in [15], that any Fredholm map defined in
a simply connected open set (the whole space in this case) is orientable. Thus, the assertion
follows from Theorem 5.3.
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