
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2008, Article ID 732193, 18 pages
doi:10.1155/2008/732193

Research Article
Weak and Strong Convergence Theorems of
an Implicit Iteration Process for a Countable
Family of Nonexpansive Mappings

Kittikorn Nakprasit,1 Weerayuth Nilsrakoo,2 and Satit Saejung1

1 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
2 Department of Mathematics, Statistics and Computer, Ubon Rajathanee University,
Ubon Ratchathani 34190, Thailand

Correspondence should be addressed to Satit Saejung, saejung@kku.ac.th

Received 22 July 2008; Accepted 18 November 2008

Recommended by Anthony Lau

Using the implicit iteration and the hybrid method in mathematical programming, we prove
weak and strong convergence theorems for finding common fixed points of a countable family of
nonexpansive mappings in a real Hilbert space. Our results include many convergence theorems
by Xu and Ori (2001) and Zhang and Su (2007) as special cases. We also apply our method to find
a common element to the set of fixed points of a nonexpansive mapping and the set of solutions
of an equilibrium problem. Finally, we propose an iteration to obtain convergence theorems for a
continuous monotone mapping.

Copyright q 2008 Kittikorn Nakprasit et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, and let C be a nonempty
subset of H. A mapping T : C → H is said to be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C. (1.1)

We denote by F(T) the set of all fixed points of T . If C is bounded closed convex and T is a
nonexpansive mapping of C into itself, then F(T) is nonempty (see [1]). We write xn → x
(xn ⇀ x, resp.) if {xn} converges strongly (weakly, resp.) to x. There are many methods
for approximating fixed points of a nonexpansive mapping. Xu and Ori [2] introduced the
following implicit iteration process to approximate a common fixed point of a finite family of
nonexpansive mappings {Ti}Ni=1: an initial point x0 ∈ C,
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x1 = α1x0 +
(
1 − α1

)
T1x1,

x2 = α2x1 +
(
1 − α2

)
T2x2,

...

xN = αNxN−1 +
(
1 − αN

)
TNxN,

xN+1 = αN+1xN +
(
1 − αN+1

)
T1xN+1

...

(1.2)

where {αn} is a sequence in (0, 1). The iteration above can be written in the following compact
form:

xn = αnxn−1 +
(
1 − αn

)
Tnxn, n ≥ 1, (1.3)

where Tn ≡ Tn mod N, here the mod N function takes values in {1, 2, . . . ,N}.They proved that
this process converges weakly to a common fixed point of {Ti}Ni=1. Recently, to obtain a strong
convergence theorem, Zhang and Su [3] modify iteration processes (1.3) by the implicit
hybrid method for a finite family of nonexpansive mappings {Ti}Ni=1: an initial point x0 ∈ C,

x0 ∈ C is arbitrary,

yn = αnxn +
(
1 − αn

)
Tnzn,

zn = βnyn +
(
1 − βn

)
Tnyn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤

∥∥xn − z
∥∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉
≥ 0

}
,

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

(1.4)

where Tn ≡ Tn mod N, {αn} and {βn} are real sequences in (0, 1] with αn < 1.
In this paper, we establish weak and strong convergence theorems for finding common

fixed points of a countable family of nonexpansive mappings in a real Hilbert space. Our
results include many convergence theorems by [2, Theorems 2] and [3, Theorems 2.4] as
special cases. The new iteration introduced in this paper is applied to find a common element
to the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium
problem. We also propose an iteration to obtain convergence theorems for a continuous
monotone mapping.

2. Preliminaries

Let H be a real Hilbert space. Then,

‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, (2.1)
∥∥λx + (1 − λ)y

∥∥2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.2)

for all x, y ∈ H and λ ∈ [0, 1]. It is also known that H satisfies the following.
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(1) Opial’s condition [4], that is, for any sequence {xn}with xn ⇀ x, the inequality

lim inf
n→∞

∥
∥xn − x

∥
∥ < lim inf

n→∞

∥
∥xn − y

∥
∥ (2.3)

holds for every y ∈ H with y /=x.

(2) The Kadec-Klee property [1], that is, for any sequence {xn} with xn ⇀ x and
‖xn‖ → ‖x‖ together implies ‖xn − x‖ → 0.

Let C be a nonempty closed convex subset ofH. Then, for any x ∈ H, there exists the nearest
point PCx in C such that

∥
∥x − PCx

∥
∥ ≤ ‖x − y‖ ∀y ∈ C. (2.4)

Such a mapping, PC is called the metric projection of H onto C. We know that PC is
nonexpansive. Furthermore, for x ∈ H and z ∈ C,

z = PCx iff 〈x − z, z − y〉 ≥ 0 ∀y ∈ C. (2.5)

Lemma 2.1 (see [5, Lemma 1]). Suppose that {an} and {bn} are two sequences of nonnegative real
numbers such that

an+1 ≤ an + bn ∀n ≥ 1, (2.6)

and
∑∞

n=1bn < ∞, then limn→∞an exists. In particular, if lim infn→∞an = 0, then limn→∞an = 0.

Lemma 2.2 (see [6, Lemma 2.2]). Suppose that {an} and {bn} are two sequences of nonnegative
real numbers such that

∑∞
n=1an = ∞ and

∑∞
n=1anbn < ∞. Then, lim infn→∞bn = 0.

Lemma 2.3 (see [7, Lemma 3.2]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {xn} be a sequence inH such that

∥∥xn+1 − y
∥∥ ≤

∥∥xn − y
∥∥ ∀y ∈ C, n ∈ N. (2.7)

Then, the sequence {PC(xn)} converges strongly to some z ∈ C.

To deal with a family of mappings, the following conditions are introduced. Let C be
a subset of a Banach space, let {Tn} and T be families of mappings of C with

⋂∞
n=1F(Tn) =

F(T)/=∅, where F(T) is the set of all common fixed points of all mappings in T.

(a) {Tn} is said to satisfy the AKTT-condition [8] if for each bounded subset B of C,

∞∑

n=1

sup
{∥∥Tn+1z − Tnz

∥∥ : z ∈ B
}
< ∞. (2.8)

(b) {Tn} is said to satisfy the NST-condition (I)withT [9] if for each bounded sequence
{zn} in C,

lim
n→∞

∥∥zn − Tnzn
∥∥ = 0 implies lim

n→∞

∥∥zn − Tzn
∥∥ = 0 ∀T ∈ T. (2.9)

In particular, if T = {T}, that is, T consists of one mapping T , then {Tn} is said to
satisfy the NST-condition (I)with T .
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(c) {Tn} is said to satisfy the NST-condition (II) [9] if for each bounded sequence {zn}
in C,

lim
n→∞

∥
∥zn+1 − Tnzn

∥
∥ = 0 implies lim

n→∞

∥
∥zn − Tmzn

∥
∥ = 0 ∀m ∈ N. (2.10)

Inspired by conditions above, we introduce the following one.

(d) {Tn} is said to satisfy the NST ∗-condition withT if for each bounded sequence {zn}
in C,

lim
n→∞

∥
∥zn − Tnzn

∥
∥ = 0, lim

n→∞

∥
∥zn − zn+1

∥
∥ = 0 (2.11)

imply that limn→∞‖zn − Tzn‖ = 0 for all T ∈ T. In particular, if T = {T}, then we
simply say that {Tn} satisfies the NST ∗-condition with T .

Remark 2.4. (i) If {Tn} satisfies the NST-condition (I) with T, then {Tn} satisfies the NST ∗-
condition with T.

(ii) If {Tn} satisfies the NST-condition (II), then {Tn} satisfies the NST ∗-condition with
{Tn}.

Lemma 2.5 (see [8, Lemma 3.2]). Let C be a nonempty closed subset of a Banach space, and let
{Tn} be a family of mappings of C into itself which satisfies the AKTT-condition, then there exists a
mapping T : C → C such that

Tx = lim
n→∞

Tnx ∀x ∈ C, (2.12)

and limn→∞ sup{‖Tz − Tnz‖ : z ∈ B} = 0 for each bounded subset B of C.

Lemma 2.6. LetC be a nonempty closed subset of a Banach space, and let {Tn} be a family of mappings
of C into itself which satisfies AKTT-condition and

⋂∞
n=1F(Tn)/=∅. Let T be the mapping from C into

itself defined by Tz = limn→∞Tnz for all z ∈ C and suppose that F(T) =
⋂∞

n=1F(Tn). Then, {Tn}
satisfies the NST-condition (I) with T . This implies that {Tn} satisfies the NST ∗-condition with T .

Proof. Let {zn} be a bounded sequence in C such that limn→∞‖zn − Tnzn‖ = 0. We apply
Lemma 2.5 to get

∥∥zn − Tzn
∥∥ ≤

∥∥zn − Tnzn
∥∥ +

∥∥Tnzn − Tzn
∥∥

≤
∥∥zn − Tnzn

∥∥ + sup
{∥∥Tnz − Tz

∥∥ : z ∈
{
zn

}}
−→ 0.

(2.13)

Hence, we obtain that {Tn} satisfies the NST-condition (I) with T . This completes the proof.

Lemma 2.7. Let C be a nonempty subset of a Banach space, and let {Tn}Nn=1 be a finite family
of nonexpansive mappings of C into itself with a common fixed point. Then, {Tn} satisfies NST ∗-
condition with T = {T1, T2, . . . , TN}, where Tn ≡ Tn mod N .

Proof. Let {zn} be a bounded sequence in C such that

lim
n→∞

∥∥zn − Tnzn
∥∥ = 0, lim

n→∞

∥∥zn+1 − zn
∥∥ = 0. (2.14)
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Obviously, it is easy to see that limn→∞‖zn+i − zn‖ = 0 for each i = 1, 2, . . . ,N. Consequently,

∥
∥zn − Tn+izn

∥
∥ ≤

∥
∥zn − zn+i

∥
∥ +

∥
∥zn+i − Tn+izn+i

∥
∥ +

∥
∥Tn+izn+i − Tn+izn

∥
∥

≤ 2
∥
∥zn − zn+i

∥
∥ +

∥
∥zn+i − Tn+izn+i

∥
∥ −→ 0 as n −→ ∞.

(2.15)

This implies that limn→∞‖zn − Tmzn‖ = 0 for each m = 1, 2, . . . ,N. This completes the proof.

Remark 2.8. There are families of mappings {Tn} and T such that

(1) {Tn} satisfies the NST ∗-condition with T;

(2) {Tn} fails the NST-condition (I)with T and the NST-condition (II).

The following example shows that the NST ∗-condition with T is strictly weaker than
NST-condition (I)with T and the NST-condition (II).

Example 2.9. Let H := R
2 and C := [0, 1] × [0, 1]. Define T1, T2 : C → C as follows:

T1(x, y) = (x, 1 − y), T2(x, y) = (1 − x, y) (2.16)

for all (x, y) ∈ C. Hence, T1 and T2 are nonexpansive mappings with

F
(
T1
)
∩ F

(
T2
)
=
(
[0, 1] ×

{
1
2

})
∩
({

1
2

}
× [0, 1]

)
=
{(

1
2
,
1
2

)}

/=∅. (2.17)

Let Tn = Tn( mod 2). By Lemma 2.7, we have {Tn} satisfies NST ∗-condition with {T1, T2}.

(a) {Tn} fails the NST-condition (I) with T = {T1, T2}. In fact, let z2n−1 = (1, 1/2) and
z2n = (1/2, 1) for all n ∈ N. Then, z2n−1 ∈ F(T2n−1) = F(T1) and z2n ∈ F(T2n) = F(T2).
In particular, ‖zn − Tnzn‖ ≡ 0. Clearly,

∥∥zn − T1zn
∥∥ � 0,

∥∥zn − T2zn
∥∥ � 0. (2.18)

Hence, {Tn} fails the NST-condition (I)with {T1, T2}.
(b) {Tn} fails the NST-condition (II). To this end, let z4n−3 = (1/4, 1/4), z4n−2 =

(1/4, 3/4), z4n−1 = (3/4, 3/4), and z4n = (3/4, 1/4) for all n ∈ N. Then, ‖zn+1 −
Tnzn‖ ≡ 0. But,

∥∥zn − T1zn
∥∥ � 0,

∥∥zn − T2zn
∥∥ � 0. (2.19)

Hence, {Tn} fails the NST-condition (II).

Lemma 2.10 (see [10]). Let C be a nonempty closed convex subset of a strictly convex Banach space,
S and T be two nonexpansive mappings of C into itself with a common fixed point, and 0 < β < 1. Let
U be a mapping defined by

U = T
(
βI + (1 − β)S

)
, (2.20)

where I is the identity mapping. Then, U is a nonexpansive mapping from C into itself and F(U) =
F(T) ∩ F(S).
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Lemma 2.11. Let C be a nonempty closed convex subset of a strictly convex Banach space. Let {Tn}
and T be two families of nonexpansive mappings from C into itself such that

⋂∞
n=1F(Tn) = F(T)/=∅,

and suppose that {Tn} satisfies the NST ∗-condition with T. Let {Un} be a family of nonexpansive
mappings from C into itself defined by

Un = Tn
(
βnI +

(
1 − βn

)
Tn

)
(2.21)

for all n ∈ N, where I is the identity mapping, and {βn} is a sequence in [a, 1] for some a ∈ (0, 1].
Then, {Un} satisfies the NST ∗-condition with T.

Proof. By Lemma 2.10, we have F(Un) = F(Tn) for all n ∈ N and so,

∞⋂

n=1

F
(
Un

)
= F(T)/=∅. (2.22)

Let {zn} be a bounded sequence in C such that

lim
n→∞

∥∥zn −Unzn
∥∥ = 0, lim

n→∞

∥∥zn+1 − zn
∥∥ = 0. (2.23)

Since
∥∥zn − Tnzn

∥∥ ≤
∥∥zn −Unzn

∥∥ +
∥∥Tn

(
βnzn +

(
1 − βn

)
Tnzn

)
− Tnzn

∥∥

≤
∥∥zn −Unzn

∥∥ +
(
1 − βn

)∥∥zn − Tnzn
∥∥

≤
∥∥zn −Unzn

∥∥ + (1 − a)
∥∥zn − Tnzn

∥∥,

(2.24)

it follows that

∥∥zn − Tnzn
∥∥ ≤ 1

a

∥∥zn −Unzn
∥∥ −→ 0. (2.25)

Since {Tn} satisfies the NST ∗-condition with T, we have

lim
n→∞

∥∥zn − Tzn
∥∥ = 0 ∀T ∈ T. (2.26)

Hence, we obtain that {Un} satisfies theNST ∗-conditionwithT. This completes the proof.

3. Weak convergence theorems

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let {Tn} be a family
of nonexpansive mappings from C into itself with a common fixed point. Let {xn} be a sequence in C
defined by x0 ∈ C and

xn = αnxn−1 +
(
1 − αn

)
Tnxn (3.1)

for all n ∈ N, where {αn} is a sequence in (0, 1). Then,

(i) limn→∞‖xn − p‖ exists for each p ∈
⋂∞

n=1F(Tn);

(ii)
∑∞

n=1(1 − αn)‖xn−1 − Tnxn‖2 < ∞.



Kittikorn Nakprasit et al. 7

Proof. Observe that if C is a nonempty closed convex subset of a real Hilbert space H and
T : C → C is a nonexpansive mapping, then for every u ∈ C, α ∈ (0, 1], the mapping
S = S(α,T) : C → C defined by

Sx = αu + (1 − α)Tx (x ∈ C) (3.2)

is a (1 − α)-contraction, that is, for all x, y ∈ C,

‖Sx − Sy‖ = (1 − α)‖Tx − Ty‖ ≤ (1 − α)‖x − y‖. (3.3)

Consequently, S has a unique fixed point x ∗ ∈ C. Thus, there exists a unique x ∗ ∈ C, that is,

x ∗ = αu + (1 − α)Tx ∗. (3.4)

This implies that the implicit iteration scheme (3.1) is well defined. To see (i), we let p ∈⋂∞
n=1F(Tn). It follows from (2.2) that

∥∥xn − p
∥∥2 =

∥∥αn

(
xn−1 − p

)
+
(
1 − αn

)(
Tnxn − p

)∥∥2

= αn

∥∥xn−1 − p
∥∥2 +

(
1 − αn

)∥∥Tnxn − p
∥∥2 − αn

(
1 − αn

)∥∥xn−1 − Tnxn

∥∥2

≤ αn

∥∥xn−1 − p
∥∥2 +

(
1 − αn

)∥∥xn − p
∥∥2 − αn

(
1 − αn

)∥∥xn−1 − Tnxn

∥∥2
.

(3.5)

Since αn > 0, we have

∥∥xn − p
∥∥2 ≤

∥∥xn−1 − p
∥∥2 −

(
1 − αn

)∥∥xn−1 − Tnxn

∥∥2
. (3.6)

In particular,

∥∥xn − p
∥∥ ≤

∥∥xn−1 − p
∥∥. (3.7)

So, limn→∞‖xn − p‖ exists. Furthermore, from (3.6), we have

(
1 − αn

)∥∥xn−1 − Tnxn

∥∥2 ≤
∥∥xn−1 − p

∥∥2 −
∥∥xn − p

∥∥2
. (3.8)

Summing from 1 to m and tending to infinity for m, we have (ii). This completes the proof.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn} and
T be two families of nonexpansive mappings from C into itself such that

⋂∞
n=1F(Tn) = F(T)/=∅,

and suppose that {Tn} satisfies the NST ∗-condition with T. Then, the sequence {xn} in C defined by
(3.1), where {αn} is a sequence in (0, b] for some b ∈ (0, 1), converges weakly tow ∈ F(T). Moreover,
limn→∞PF(T)xn = w.

Proof. It follows from Lemma 3.1(i) that {xn} is bounded. By Lemma 3.1(ii) and αn ≤ b, we
have

∞∑

n=1

∥∥xn−1 − Tnxn

∥∥2
< ∞. (3.9)
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It follows that limn→∞‖xn−1 − Tnxn‖ = 0. From (3.1), we immediately have

lim
n→∞

∥
∥xn − Tnxn

∥
∥ = lim

n→∞
αn

∥
∥xn−1 − Tnxn

∥
∥ = 0, (3.10)

and so,

lim
n→∞

∥
∥xn − xn−1

∥
∥ = 0. (3.11)

Since {Tn} satisfies the NST ∗-condition with T, we have

lim
n→∞

∥
∥xn − Txn

∥
∥ = 0 ∀T ∈ T. (3.12)

We now extract a subsequence {xni} of {xn} such that xni ⇀ w. So, by the demiclosedness
principle, w ∈ F(T). To prove that xn ⇀ w, suppose that there exists another subsequence
{xmj} of {xn} such that xmj ⇀ w′ /=w. So, we have w′ ∈ F(T). It follows from Lemma 3.1(i)
and Opial’s condition that

lim
n→∞

∥∥xn −w
∥∥ = lim

i→∞

∥∥xni −w
∥∥ < lim

i→∞

∥∥xni −w′∥∥

= lim
j→∞

∥∥xmj −w′∥∥ < lim
j→∞

∥∥xmj −w
∥∥

= lim
n→∞

∥∥xn −w
∥∥,

(3.13)

arriving at a contradiction. Hence, xn ⇀ w ∈ F(T). Finally, we prove that limn→∞zn = w,
where zn = PF(T)xn for each n ∈ N. By (3.7) and Lemma 2.3, there is w0 ∈ F(T) such that
zn → w0. From zn = PF(T)xn and w ∈ F(T), we have

〈
xn − zn, zn −w

〉
≥ 0 ∀n ∈ N. (3.14)

It follows from zn → w0 and xn ⇀ w that

〈
w −w0, w0 −w

〉
≥ 0, (3.15)

and then w0 = w. This completes the proof.

Using Theorem 3.2 and Lemma 2.7, we have the following result.

Corollary 3.3 (see [2, Theorem 2]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let {Tn}Nn=1 be a finite family of nonexpansive mappings of C into itself with a common
fixed point. Then, the sequence {xn} in C defined by (1.3), where {αn} is a sequence in (0, b] for some
b ∈ (0, 1), converges weakly to w = limn→∞P⋂N

n=1F(Tn)
xn.

In the presence of the stronger condition than NST ∗-condition with T, we are able to
weaken the restriction on {αn}.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H, and let {Tn}
be a family of nonexpansive mappings of C into itself which satisfies the AKTT-condition and⋂∞

n=1F(Tn)/=∅. Let T be the mapping fromC into itself defined by Tz = limn→∞Tnz for all z ∈ C, and
suppose that F(T) =

⋂∞
n=1F(Tn). Then, the sequence in C defined by (3.1), where {αn} is a sequence

in (0, 1) with
∑∞

n=1(1 − αn) = ∞, converges weakly to w = limn→∞PF(T)xn.
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Proof. By Lemmas 2.2 and 3.1(ii) and
∑∞

n=1(1 − αn) = ∞, we have

lim inf
n→∞

∥
∥xn−1 − Tnxn

∥
∥ = 0, (3.16)

and hence,

lim inf
n→∞

∥
∥xn − Tnxn

∥
∥ = lim inf

n→∞
αn

∥
∥xn−1 − Tnxn

∥
∥ = 0. (3.17)

Next, we prove that the limit limn→∞‖xn−Tnxn‖ exists. Since {xn} is bounded, it follows from
AKTT-condition that

∞∑

n=1

sup
{∥∥Tnz − Tn−1z

∥
∥ : z ∈

{
xn

}}
< ∞. (3.18)

Notice that
∥∥xn − xn−1

∥∥ =
(
1 − αn

)∥∥xn−1 − Tnxn

∥∥

≤
(
1 − αn

)(∥∥xn−1 − Tn−1xn−1
∥∥ +

∥∥Tn−1xn−1 − Tn−1xn

∥∥ +
∥∥Tn−1xn − Tnxn

∥∥)

≤
(
1 − αn

)∥∥xn−1 − Tn−1xn−1
∥∥ +

(
1 − αn

)∥∥xn−1 − xn

∥∥

+
(
1 − αn

)
sup

{∥∥Tnz − Tn−1z
∥∥ : z ∈

{
xn

}}
,

(3.19)

so we have

αn

∥∥xn − xn−1
∥∥ ≤

(
1 − αn

)∥∥xn−1 − Tn−1xn−1
∥∥ +

(
1 − αn

)
sup

{∥∥Tnz − Tn−1z
∥∥ : z ∈

{
xn

}}
.
(3.20)

It follows that

∥∥xn − Tnxn

∥∥ =
αn

1 − αn

∥∥xn − xn−1
∥∥

≤
∥∥xn−1 − Tn−1xn−1

∥∥ + sup
{∥∥Tnz − Tn−1z

∥∥ : z ∈
{
xn

}}
.

(3.21)

By Lemma 2.1 and (3.18), we have limn→∞‖xn − Tnxn‖ exists. Thus, we have

lim
n→∞

∥∥xn − Tnxn

∥∥ = 0. (3.22)

From the definition of T , we have T is nonexpansive. By Lemma 2.6, we have {Tn} satisfies
the NST ∗-condition with T . As in the proof of Theorem 3.2, {xn} converges weakly to w =
limn→∞PF(T)xn.

Remark 3.5. Since the NST ∗-condition is implied by the AKTT-condition, Theorem 3.4 still
holds under the same condition of {αn} as in Theorem 3.2.

As in [8, Theorem 4.1], we can generate a family {Tn} of nonexpansive mappings
satisfying the AKTT-condition by using convex combination of a general family {Sk} of
nonexpansive mappings with a common fixed point.
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Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {αn} be a
sequence in (0, 1) with

∑∞
n=1(1 − αn) = ∞. Let {βkn} be a family of positive real numbers with indices

n, k ∈ N with k ≤ n such that

(i)
∑n

k=1β
k
n = 1 for every n ∈ N;

(ii) limn→∞β
k
n > 0 for every k ∈ N;

(iii)
∑∞

n=1
∑n

k=1|βkn+1 − βkn| < ∞.

Let {Sk} be a family of nonexpansive mappings from C into itself with a common fixed point.
Then, the sequence {xn} in C defined by (3.1), where Tn ≡

∑n
k=1β

k
nSk, converges weakly to

w = limn→∞P⋂∞
k=1F(Sk)xn.

4. Strong convergence theorems

We next use the hybrid method from mathematical programming to obtain several strong
convergence theorems.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn} and T
be two families of nonexpansive mappings from C into itself such that

⋂∞
n=1F(Tn) = F(T)/=∅, and

suppose that {Tn} satisfies the NST ∗-condition withT. Let {xn} be a sequence in C defined as follows:

x0 ∈ C is arbitrary,

yn = αnxn +
(
1 − αn

)
Tnyn,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤

∥∥xn − z
∥∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉
≥ 0

}
,

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

(4.1)

where {αn} is a sequence in (0, b] for some b ∈ (0, 1). Then, {xn} converges strongly to PF(T)x0.

Proof. We first prove that Cn and Qn are closed and convex for each n ∈ N ∪ {0}. From the
definitions of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex for each
n ∈ N ∪ {0}. We prove that Cn is convex. Since ‖yn − z‖ ≤ ‖xn − z‖ is equivalent to

∥∥yn − xn

∥∥2 + 2
〈
yn − xn, xn − z

〉
≤ 0, (4.2)

(by (2.1)) it follows that Cn is convex. Next, we show that

F(T) ⊂ Cn ∀n ∈ N ∪ {0}. (4.3)

Let p ∈ F(T) and n ∈ N ∪ {0}. Since

∥∥yn − p
∥∥ =

∥∥αnxn +
(
1 − αn

)
Tnyn − p

∥∥

≤ αn

∥∥xn − p
∥∥ +

(
1 − αn

)∥∥Tnyn − p
∥∥

≤ αn

∥∥xn − p
∥∥ +

(
1 − αn

)∥∥yn − p
∥∥,

(4.4)
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it follows that

∥
∥yn − p

∥
∥ ≤

∥
∥xn − p

∥
∥, (4.5)

and hence, p ∈ Cn. Therefore, we obtain (4.3). Now, we show that

F(T) ⊂ Qn ∀n ∈ N ∪ {0}. (4.6)

Weprove this by induction. For n = 0, we have F(T) ⊂ C = Q0. Suppose that F(T) ⊂ Qn. Then,
∅/=F(T) ⊂ Cn∩Qn and there exists a unique element xn+1 ∈ Cn∩Qn such that xn+1 = PCn∩Qnx0.
Then,

〈
xn+1 − z, x0 − xn+1

〉
≥ 0 (4.7)

for each z ∈ Cn ∩Qn. In particular,

〈
xn+1 − p, x0 − xn+1

〉
≥ 0 (4.8)

for each p ∈ F(T). It follows that F(T) ⊂ Qn+1, and hence (4.6) holds. Therefore,

F(T) ⊂ Cn ∩Qn ∀n ∈ N ∪ {0}. (4.9)

This implies that {xn} is well defined. It follows from the definition of Qn that xn = PQnx0,
that is,

∥∥xn − x0
∥∥ ≤

∥∥z − x0
∥∥ ∀z ∈ Qn and all n ∈ N ∪ {0}. (4.10)

In particular,

∥∥xn − x0
∥∥ ≤

∥∥z − x0
∥∥ ∀z ∈ F(T) and all n ∈ N ∪ {0}. (4.11)

On the other hand, from xn+1 = PCn∩Qnx0 ∈ Qn, we have

∥∥xn − x0
∥∥ ≤

∥∥xn+1 − x0
∥∥ ∀n ∈ N ∪ {0}. (4.12)

Therefore, {‖xn−x0‖} is nondecreasing and bounded. So, limn→∞‖xn−x0‖ exists. This implies
that {xn} is bounded. Since xn+1 = PCn∩Qnx0 ∈ Qn, we have

〈
xn − xn+1, x0 − xn

〉
≥ 0. (4.13)

It follows from (2.1) that

∥∥xn+1 − xn

∥∥2 =
∥∥(xn+1 − x0

)
−
(
xn − x0

)∥∥2

=
∥∥xn+1 − x0

∥∥2 −
∥∥xn − x0

∥∥2 − 2
〈
xn+1 − xn, xn − x0

〉

≤
∥∥xn+1 − x0

∥∥2 −
∥∥xn − x0

∥∥2

(4.14)

for all n ∈ N ∪ {0}. This implies that

lim
n→∞

∥∥xn+1 − xn

∥∥ = 0. (4.15)
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Since xn+1 ∈ Cn, we have
∥
∥yn − xn

∥
∥ ≤

∥
∥yn − xn+1

∥
∥ +

∥
∥xn − xn+1

∥
∥

≤ 2
∥
∥xn − xn+1

∥
∥ −→ 0.

(4.16)

It follows from αn ≤ b < 1 that
∥∥xn − Tnxn

∥∥ ≤
∥∥xn − Tnyn

∥∥ +
∥∥Tnyn − Tnxn

∥∥

≤
∥
∥xn − Tnyn

∥
∥ +

∥
∥yn − xn

∥
∥

=
1

1 − αn

∥
∥yn − xn

∥
∥ +

∥
∥yn − xn

∥
∥

≤ 1
1 − b

∥
∥yn − xn

∥
∥ +

∥
∥yn − xn

∥
∥ −→ 0.

(4.17)

Since {Tn} satisfies the NST ∗-condition with T, we have

lim
n→∞

∥∥xn − Txn

∥∥ = 0 ∀T ∈ T. (4.18)

Finally, we show that xn → w, where w = PF(T)x0. Since {xn} is bounded, let {xnk} be a
subsequence of {xn} such that xnk ⇀ w′. Since I − T is demiclosed and by using (4.18), we
have w′ ∈ F(T). By (4.11), we have

∥∥xn − x0
∥∥ ≤

∥∥w − x0
∥∥. (4.19)

It follows from w = PF(T)x0 and the lower semicontinuity of the norm that

∥∥w − x0
∥∥ ≤

∥∥w′ − x0
∥∥ ≤ lim inf

k→∞

∥∥xnk − x0
∥∥ ≤ lim sup

k→∞

∥∥xnk − x0
∥∥ ≤

∥∥w − x0
∥∥. (4.20)

Thus, we obtain that limk→∞‖xnk −x0‖ = ‖w′ −x0‖ = ‖w−x0‖. Using the Kadec-Klee property
of H, we obtain that limk→∞xnk = w′ = w. Since {xnk} is an arbitrary subsequence of {xn},
we can conclude that the whole sequence {xn} converges strongly to PF(T)x0.

Using Theorem 4.1 and Lemmas 2.7 and 2.11, we have the following result.

Corollary 4.2 (see [3, Theorem 2.4]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let {Tn}Nn=1 be a finite family of nonexpansive mappings of C into itself with a common
fixed point. Then, the sequence {xn} in C defined by (1.4), where {αn} is a sequence in (0, a] for some
a ∈ (0, 1), and {βn} is a sequence in [b, 1] for some b ∈ (0, 1], converges strongly to P⋂N

n=1F(Tn)
x0.

5. Applications

5.1. Equilibrium problems

Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a bifunction of
C ×C into R, where R is the set of real numbers. The equilibrium problem for f : C ×C → R

is to find x ∈ C such that

f(x, y) ≥ 0 ∀y ∈ C. (5.1)
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The set of solutions of (5.1) is denoted by EP(f). Numerous problems in physics,
optimization, and economics are reduced to find a solution of (5.1). Some methods have
been proposed to solve the equilibrium problem [11–17]. In 2005, Combettes and Hirstoaga
[12] introduced an iterative scheme of finding the best approximation to the initial data when
EP(f) is nonempty, and they also proved a strong convergence theorem.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the
following conditions (see [11]).

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for any x, y ∈ C;

(A3) f is upper-hemicontinuous, that is, for each x, y, z ∈ C,

lim sup
t→ 0+

f
(
tz + (1 − t)x, y

)
≤ f(x, y); (5.2)

(A4) f(x, ·) is convex and lower semicontinuous for each x ∈ C.

The following lemma is shown in [11, Corollary 1] and [12, Lemma 2.12].

Lemma 5.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH, let f be a bifunction
from C × C into R satisfies (A1)–(A4), and let r > 0 and x ∈ H. Then, there exists a unique x ∗ ∈ C
such that

f(x∗, y) +
1
r

〈
y − x∗, x∗ − x

〉
≥ 0 ∀y ∈ C. (5.3)

Moreover, let Tr be a mapping of H into C defined by

Tr(x) = x∗ ∀x ∈ H. (5.4)

Then, the following conditions hold:

(i) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Trx − Try
∥∥2 ≤ ‖x − y‖2 −

∥∥Trx − x −
(
Try − y

)∥∥2; (5.5)

(ii) F(Tr) = EP(f);

(iii) EP(f) is closed and convex.

Lemma 5.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a
nonexpansive mapping of C into H, and let T be a firmly nonexpansive mapping from H into C
such that F(S) ∩ F(T)/=∅. Then, ST is a nonexpansive mapping from H into itself and

F(ST) = F(S) ∩ F(T). (5.6)

Proof. Since T is firmly nonexpansive, there exists a nonexpansive mapping U such that T =
(1/2)(I +U) and F(U) = F(T). As in the proof of Lemma 2.10, the conclusion holds.

Motivated by Tada and Takahashi [16] and S. Takahashi and W. Takahashi [17], we
prove weak and strong convergence theorems for finding a common element of the set of
fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem
in a Hilbert space. Using Theorem 3.4 and Lemmas 5.1 and 5.2, we have Theorem 5.3.
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Theorem 5.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a
bifunction from C ×C into R satisfying (A1)–(A4), and let S be a nonexpansive mapping of C intoH
such that F(S) ∩ EP(f)/=∅. Let {xn} and {un} be two sequences generated by x0 ∈ H and

f
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉
≥ 0 ∀y ∈ C,

xn = αnxn−1 +
(
1 − αn

)
Sun

(5.7)

for all n ∈ N, where {αn} is a sequence in (0, 1) with
∑∞

n=1(1 − αn) = ∞, and {rn} is a sequence
in (0,∞) with lim infn→∞rn > 0 and

∑∞
n=1|rn+1 − rn| < ∞. Then, {xn} converges weakly to w ∈

F(S) ∩ EP(f). Moreover, limn→∞PF(S)∩EP(f)xn = w.

Proof. It is noted that the iteration scheme is well defined. As in the proof of [14, Theorem 16],
it follows from lim infn→∞rn > 0 and

∑∞
n=1|rn+1 − rn| < ∞ that

∞∑

n=1

sup
{∥∥Trn+1z − Trnz

∥∥ : z ∈ B
}
< ∞ (5.8)

for any bounded subset B ofH. Moreover, by Lemma 2.5, the mapping T defined by

Tx = lim
n→∞

Trnx ∀x ∈ H (5.9)

satisfies

F(T) =
∞⋂

n=1

F
(
Trn

)
= EP(f). (5.10)

It is easy to see that T is a firmly nonexpansive mapping of H into C. Write Tn ≡ STrn then,
by Lemma 5.2, we have Tn is a nonexpansive mapping fromH into itself, and

F
(
Tn

)
= F

(
STrn

)
= F(S) ∩ F

(
Trn

)
= F(S) ∩ EP(f) = F(ST) (5.11)

for all n ∈ N and so,

∞⋂

n=1

F(Tn) = F(ST) = F(S) ∩ EP(f). (5.12)

Since S is nonexpansive, (5.8) and (5.9), we have

∞∑

n=1

sup
{∥∥Tn+1z − Tnz

∥∥ : z ∈ B
}
< ∞ (5.13)

for any bounded subset B ofH, and

STx = S

(
lim
n→∞

Trnx

)
= lim

n→∞
STrnx = lim

n→∞
Tnx ∀x ∈ H. (5.14)

Applying Theorem 3.4, {xn} converges weakly to w = limn→∞PF(S)∩EP(f)xn.
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Similarly, we have the following strong convergence theorem. We safely suppress the
proof.

Theorem 5.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a
bifunction from C ×C into R satisfying (A1)–(A4), and let S be a nonexpansive mapping of C intoH
such that F(S) ∩ EP(f)/=∅. Let {xn} and {un} be two sequences generated by x0 ∈ H and

f
(
un, y

)
+

1
rn

〈
y − un, un − yn

〉
≥ 0 ∀y ∈ C,

yn = αnxn−1 +
(
1 − αn

)
Sun,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤

∥
∥xn − z

∥
∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉
≥ 0

}
,

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

(5.15)

where {αn} is a sequence in (0, a) for some a ∈ (0, 1), and {rn} is a sequence in (0,∞) with
lim infn→∞rn > 0 and

∑∞
n=1|rn+1 − rn| < ∞. Then, {xn} converges strongly to PF(S)∩EP(f)x0.

5.2. Convergence theorem for monotone mappings

LetH be a real Hilbert space, andC be a nonempty closed convex subset ofH. LetA : C → H
be a mapping. The classical variational inequality is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀y ∈ C. (5.16)

The set of solutions of classical variational inequality is denoted by VIP(C,A). The variational
inequality has been extensively studied in the literatures (see [7, 18–23] and the references
therein). We recall that a mapping A : C → H is said to be

(a) monotone if

〈Au −Av, u − v〉 ≥ 0 ∀u, v ∈ C; (5.17)

(b) α-inverse-strongly monotone if there exists a constant α > 0 such that

〈Au −Av, u − v〉 ≥ α‖Au −Av‖2 ∀u, v ∈ C; (5.18)

(c) r-strongly monotone if there exists a constant r > 0 such that

〈Au −Av, u − v〉 ≥ r‖u − v‖2 ∀u, v ∈ C; (5.19)

(d) relaxed (γ, r)-cocoercive if there exist constants γ , r > 0 such that

〈Au −Av, u − v〉 ≥ −γ‖Au −Av‖2 + r‖u − v‖2 ∀u, v ∈ C; (5.20)

(e) μ-Lipschitzian if there exists a constant μ > 0 such that

‖Au −Av‖ ≤ μ‖u − v‖ ∀u, v ∈ C. (5.21)
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Remark 5.5. (1) Every α-inverse-strongly monotone mapping is monotone and 1/α-Lipschit-
zian.

(2) Every r-strongly monotone is monotone.
(3) Every relaxed (γ, r)-cocoercive and μ-Lipschitzian mapping with γμ2 ≤ r is

monotone.

Lemma 5.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a
continuous monotone mapping of C intoH. Define a bifunction f : C × C → R as follows:

f(x, y) = 〈Ax, y − x〉 ∀x, y ∈ C. (5.22)

Then,

(i) [14, Lemma 19] f satisfies (A1)–(A4) and VIP(C,A) = EP(f);

(ii) [14, Lemma 20] If x ∈ H, u ∈ C, and r > 0, then

f(u, y) +
1
r
〈y − u, u − x〉 ≥ 0 ∀y ∈ C ⇐⇒ u = PC(x − rAu). (5.23)

Using Theorem 5.3 and Lemma 5.6, we have Theorem 5.7.

Theorem 5.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a
continuous monotone mapping of C, and let S be a nonexpansive mapping of C into H such that
F(S) ∩ VIP(C,A)/=∅. Let {xn} and {un} be sequences generated by x0 ∈ H and

un = PC

(
xn − rnAun

)
,

xn = αnxn−1 +
(
1 − αn

)
Sun

(5.24)

for all n ∈ N, where {αn} is a sequence in (0, 1) with
∑∞

n=1(1 − αn) = ∞, and {rn} is a sequence
in (0,∞) with lim infn→∞rn > 0 and

∑∞
n=1|rn+1 − rn| < ∞. Then, {xn} converges weakly to w ∈

F(S) ∩ VIP(C,A). Moreover, limn→∞PF(S)∩VIP(C,A)xn = w.

Using Theorem 5.4 and Lemma 5.6, we also have Theorem 5.8.

Theorem 5.8. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a
continuous monotone mapping of C, and let S be a nonexpansive mapping of C into H such that
F(S) ∩ VIP(C,A)/=∅. Let {xn} and {un} be sequences generated by x0 ∈ H and

un = PC

(
yn − rnAun

)
,

yn = αnxn−1 +
(
1 − αn

)
Sun,

Cn =
{
z ∈ C :

∥∥yn − z
∥∥ ≤

∥∥xn − z
∥∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉
≥ 0

}
,

xn+1 = PCn∩Qnx0, n = 0, 1, 2, . . . ,

(5.25)

where {αn} is a sequence in (0, a] for some a ∈ (0, 1), and {rn} is a sequence in (0,∞) with
lim infn→∞rn > 0 and

∑∞
n=1|rn+1 − rn| < ∞. Then, {xn} converges strongly to PF(S)∩VIP(C,A)x0.
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Remark 5.9. (1) By Remark 5.5, we obtain a strong convergence theorem for α-inverse-
strongly monotone mappings, r-strongly monotone and continuous mappings and relaxed
(γ, r)-cocoercive and μ-Lipschitzian mappings with γμ2 ≤ r.

(2) Someweak and strong convergence theorems formonotone Lipschitzianmappings
were established by several authors [7, 18–23]. However, there is a monotone continuous
mapping which is not Lipschitzian (see [14, Remark 23]). Therefore, Theorems 5.7 and 5.8
provide a new convergence theorem for a wider class of mappings.
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