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1. Introduction

Let K be a nonempty closed convex subset of real normed linear space E. Recall that a
mapping T : K → K is called asymptotically nonexpansive if there exists a sequence{rn} ⊂
[0,∞), with limn→∞ rn = 0 such that ‖Tnx − Tny‖ ≤ (1 + rn)‖x − y‖, for all x, y ∈ K
and n ≥ 1. Moreover, it is uniformly L-Lipschitzian if there exists a constant L > 0 such
that ‖Tnx − Tny‖ ≤ L‖x − y‖, for all x, y ∈ K and each n ≥ 1. Denote and define by
F(T) = {x ∈ K : Tx = x} the set of fixed points of T . Suppose F(T)/=∅. A mapping T
is called asymptotically quasi-non-expansive if there exists a sequence {rn} ⊂ [0,∞), with
limn→∞ rn = 0 such that ‖Tnx − p‖ ≤ (1 + rn)‖x − p‖, for all x, y ∈ K, p ∈ F(T), and n ≥ 1.

It is clear from the above definitions that an asymptotically nonexpansive mapping
must be uniformly L-Lipschitzian as well as asymptotically quasi-non-expansive, but the
converse does not hold. Iterative technique for asymptotically nonexpansive self-mapping
in Hilbert spaces and Banach spaces including Mann-type and Ishikawa-type iteration
processes has been studied extensively by many authors; see, for example, [1–6].

Recently, Chidume et al. [7] have introduced the concept of nonself asymptotically
nonexpansive mappings, which is the generalization of asymptotically nonexpansive
mappings. Similarly, the concept of nonself asymptotically quasi-non-expansive mappings
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can also be defined as the generalization of asymptotically quasi-non-expansive mappings
and nonself asymptotically nonexpansive mappings. These mappings are defined as follows.

Definition 1.1. Let K be a nonempty closed convex subset of real normed linear space E, let
P : E → K be the nonexpansive retraction of E onto K, and let T : K → E be a nonself
mapping.

(i) T is said to be a nonself asymptotically nonexpansive mapping if there exists a
sequence {rn} ⊂ [0,∞), with limn→∞ rn = 0 such that

∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥ ≤ (

1 + rn
)‖x − y‖, (1.1)

for all x, y ∈ K and n ≥ 1.
(ii) T is said to be a nonself uniformly L-Lipschitzianmapping if there exists a constant

L > 0 such that

∥
∥T(PT)n−1x − T(PT)n−1y

∥
∥ ≤ L‖x − y‖, (1.2)

for all x, y ∈ K and n ≥ 1.
(iii) T is said to be a nonself asymptotically quasi-non-expansive mapping if F(T)/=∅

and there exists a sequence {rn} ⊂ [0,∞), with limn→∞ rn = 0 such that

∥
∥T(PT)n−1x − p

∥
∥ ≤ (

1 + rn
)‖x − p‖, (1.3)

for all x, y ∈ K, p ∈ F(T), and n ≥ 1.

By studying the following iteration process (Mann-type iteration):

x1 ∈ K, xn+1 = P
((

1 − αn

)

xn + αnT(PT)
n−1xn

)

, ∀n ≥ 1, (1.4)

where {αn} ⊂ [0, 1], Chidume et al. [7] obtained many convergence theorems for the fixed
points of nonself asymptotically nonexpansive mapping T . Later on, Wang [8] generalized
the iteration process (1.4) as follows (Ishikawa-type iteration):

x1 ∈ K,

xn+1 = P
((

1 − αn

)

xn + αnT1
(

PT1
)n−1

yn

)

,

yn = P
((

1 − βn
)

xn + βnT2
(

PT2
)n−1

xn

)

, ∀n ≥ 1

(1.5)

where T1, T2 : K → E are nonself asymptotically nonexpansive mappings and {αn}, {βn} ⊂
[0, 1]. Also, he got several convergence theorems of the iterative scheme (1.5) under proper
conditions.

In 2000, Noor [9] first introduced a three-step iterative sequence and studied the
approximate solutions of variational inclusion in Hilbert spaces by using the techniques of
updating the solution and the auxiliary principle. Glowinski and Tallec [10] showed that the
three-step iterative schemes perform better than the Mann-type and Ishikawa-type iterative
schemes. On the other hand, Xu and Noor [11] introduced and studied a three-step scheme
to approximate fixed points of asymptotically nonexpansive mappings in Banach spaces.
Cho et al. [12] and Plubtieng et al. [13] extended the work of Xu and Noor to the three-
step iterative scheme with errors, and gave weak and strong convergence theorems for
asymptotically nonexpansive mappings in Banach spaces.
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Inspired and motivated by these facts, a new class of three-step iterative schemes with
errors, for three nonself asymptotically quasi-non-expansive mappings, is introduced and
studied in this paper. This scheme can be viewed as an extension for (1.4), (1.5), and others.
This scheme is defined as follows.

LetK be a nonempty convex subset of real normed linear spaceX, let P : E → K be the
nonexpansive retraction of E ontoK, and let T1, T2, T3 : K → E be three nonself asymptotically
quasi-non-expansive mappings. Compute the sequences{xn}, {yn}, and {zn} by

x1 ∈ K,

xn+1 = P
(

αnT1
(

PT1
)n−1

yn + βnxn + γnwn

)

,

yn = P
(

α′
nT2

(

PT2
)n−1

zn + β′nxn + γ ′nvn

)

,

zn = P
(

α′′
nT3(PT3

)n−1
xn + β′′nxn + γ ′′nun

)

, ∀n ≥ 1

(1.6)

where {αn}, {α′
n}, {α′′

n}, {βn}, {β′n}, {β′′n}, {γn}, {γ ′n}, and {γ ′′n} are real sequences in [0, 1] with
αn + βn + γn = α′

n + β′n + γ ′n = α′′
n + β′′n + γ ′′n = 1, and {un}, {vn}, and {wn} are bounded sequences

in K.

Remark 1.2. (i) If T1 = T2 = T3 := T , γn = γ ′n = γ ′′n = 0, and α′
n = α′′

n = 0, then scheme (1.6)
reduces to the Mann-type iteration (1.4).

(ii) If T2 = T3, γn = γ ′n = γ ′′n = 0, and α′′
n = 0, then scheme (1.6) reduces to the Ishikawa-

type iteration (1.5).
(iii) If T1, T2, and T3 are three self-asymptotically nonexpansive mappings, then

scheme (1.6) reduces to the three-step iteration with errors defined by [12, 13], and others.

The purpose of this paper is to study the iterative sequences (1.6) to converge to a
common fixed point of three nonself asymptotically quasi-non-expansive mappings in real
uniformly convex Banach spaces. Our results extend and improve the corresponding results
in [5, 7, 8, 11–13], and many others.

2. Preliminaries and lemmas

In this section, we first recall some well-known definitions.
A real Banach space E is said to be uniformly convex if the modulus of convexity of E:

δE(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x − y‖ = ε

}

> 0, (2.1)

for all 0 < ε ≤ 2 (i.e., δE(ε) is a function (0, 2] → (0, 1)).
A subset K of E is said to be a retract if there exists continuous mapping P : E → K

such that Px = x, for all x ∈ K, and every closed convex subset of a uniformly convex Banach
space is a retract. A mapping P : E → E is said to be a retraction if P 2 = P .

A mapping T : K → E with F(T)/=∅ is said to satisfy condition (A) (see [14]) if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, for all r ∈ (0,∞), such that

‖x − Tx‖ ≥ f
(

d
(

x, F(T)
))

, (2.2)

for all x ∈ K, where d(x, F(T)) = inf{‖x − x∗‖ : x∗ ∈ F(T)}.
We modify this condition for three mappings T1, T2, T3 : K → E as follows. Three

mappings T1, T2, T3 : K → E, whereK is a subset of E, are said to satisfy condition (B) if there
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exist a real number α > 0 and a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, for
all r ∈ (0,∞), such that

∥
∥x − T1x

∥
∥ ≥ αf

(

d(x, F)
)

or
∥
∥x − T2x

∥
∥ ≥ αf

(

d(x, F)
)

or
∥
∥x − T3x

∥
∥ ≥ αf

(

d(x, F)
)

,
(2.3)

for all x ∈ K, where F = F(T1)∩F(T2)∩F(T3)/=∅. Note that condition (B) reduces to condition
(A)when T1 = T2 = T3 and α = 1.

A mapping T : K → E is said to be semicompact if, for any sequence {xn} in K such
that ‖xn−Txn‖ → 0 (n → ∞), there exists subsequence {xnj} of {xn} such that {xnj} converges
strongly to x∗ ∈ K.

Next we state the following useful lemmas.

Lemma 2.1 (see [5]). Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤
(

1 + cn
)

an + bn, ∀n ≥ 1. (2.4)

If
∑∞

n=1 cn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞ an exists.

Lemma 2.2 (see [15]). Let E be a real uniformly convex Banach space and 0 ≤ k ≤ tn ≤ q < 1,
for all positive integer n ≥ 1. Suppose that {xn} and {yn} are two sequences of E such that
lim supn→∞‖xn‖ ≤ r, lim supn→∞‖yn‖ ≤ r, and limn→∞‖tnxn + (1 − tn)yn‖ = r hold, for some
r ≥ 0; then limn→∞‖xn − yn‖ = 0.

3. Main results

In this section, we will prove the strong convergence of the iteration scheme (1.6) to a
common fixed point of nonself asymptotically quasi-non-expansive mappings T1, T2, and T3.
We first prove the following lemmas.

Lemma 3.1. LetK be a nonempty closed convex subset of a real normed linear space E. Let T1, T2, T3 :
K → E be nonself asymptotically quasi-non-expansive mappings with sequences {r(i)n } such that
∑∞

n=1 r
(i)
n < ∞, for all i = 1, 2, 3. Suppose that {xn} is defined by (1.6) with

∑∞
n=1 γn < ∞,

∑∞
n=1 γ

′
n <

∞, and
∑∞

n=1 γ
′′
n < ∞. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅, then limn→∞ ‖xn − p‖ exists, for all p ∈ F.

Proof. Let p ∈ F. Since {un}, {vn}, and {wn} are bounded sequences in K, therefore there
exists M > 0 such that

M = max
{

sup
n≥1

∥
∥un − p

∥
∥, sup

n≥1

∥
∥vn − p

∥
∥, sup

n≥1

∥
∥wn − p

∥
∥

}

. (3.1)

Let rn = max{r(1)n , r
(2)
n , r

(3)
n } and kn = max{γn, γ ′n, γ ′′n}. Then

∑∞
n=1 rn < ∞ and

∑∞
n=1 kn < ∞. By

(1.6), we have
∥
∥xn+1 − p

∥
∥ =

∥
∥P

[

αnT1
(

PTn−1
1

)

yn + βnxn + γnwn

] − P(p)
∥
∥

≤ ∥
∥αnT1

(

PTn−1
1

)

yn + βnxn + γnwn −
(

αn + βn + γn
)

p
∥
∥

≤ ∥
∥αn

[

T1
(

PTn−1
1

)

yn − p
]

+ βn
(

xn − p
)

+ γn
(

wn − p
)∥
∥

≤ αn

(

1 + rn
)∥
∥yn − p

∥
∥ + βn

∥
∥xn − p

∥
∥ + kn

∥
∥wn − p

∥
∥,

(3.2)

∥
∥yn − p

∥
∥ =

∥
∥P

[

α′
nT2

(

PTn−1
2

)

zn + β′nxn + γ ′nvn

] − P(p)
∥
∥

≤ ∥
∥α′

nT2
(

PTn−1
2

)

zn + β′nxn + γ ′nvn −
(

α′
n + β′n + γ ′n

)

p
∥
∥

≤ α′
n

(

1 + rn
)∥
∥zn − p

∥
∥ + β′n

∥
∥xn − p

∥
∥ + kn

∥
∥vn − p

∥
∥,

(3.3)
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and similarly, we also have

∥
∥zn − p

∥
∥ ≤ α′′

n

(

1 + rn
)∥
∥xn − p

∥
∥ + β′′n

∥
∥xn − p

∥
∥ + kn

∥
∥un − p

∥
∥. (3.4)

Substituting (3.4) into (3.3), we obtain

∥
∥yn − p

∥
∥ ≤ α′

n

(

1 + rn
)[

α′′
n

(

1 + rn
)∥
∥xn − p

∥
∥ + β′′n

∥
∥xn − p

∥
∥ + kn

∥
∥un − p

∥
∥
]

+ β′n
∥
∥xn − p

∥
∥ + kn

∥
∥vn − p

∥
∥

≤ α′
nα

′′
n

(

1 + rn
)2∥
∥xn − p

∥
∥ + α′

nβ
′′
n

(

1 + rn
)∥
∥xn − p

∥
∥ + β′n

∥
∥xn − p

∥
∥

+ α′
nkn

(

1 + rn
)∥
∥un − p

∥
∥ + kn

∥
∥vn − p

∥
∥

≤ (

1 − β′n − γ ′n
)

α′′
n

(

1 + rn
)2∥
∥xn − p

∥
∥ +

(

1 − β′n − γ ′n
)

β′′n
(

1 + rn
)∥
∥xn − p

∥
∥

+ β′n
∥
∥xn − p

∥
∥ + kn

(

1 + rn)
∥
∥un − p

∥
∥ + kn

∥
∥vn − p

∥
∥

≤ (

1 − β′n − γ ′n
)(

α′′
n + β′′n

)(

1 + rn
)2∥
∥xn − p

∥
∥ + β′n

∥
∥xn − p

∥
∥ +mn

≤ (

1 − β′n
)(

1 + rn
)2∥
∥xn − p

∥
∥ + β′n

(

1 + rn
)2∥
∥xn − p

∥
∥ +mn

≤ (

1 + rn
)2∥
∥xn − p

∥
∥ +mn,

(3.5)

wheremn = kn(2+rn)M. Since
∑∞

n=1 rn < ∞ and
∑∞

n=1 kn < ∞, then
∑∞

n=1 mn < ∞. Substituting
(3.5) into (3.2), we have

∥
∥xn+1 − p

∥
∥ ≤ αn

(

1 + rn
)[(

1 + r2n
)∥
∥xn − p

∥
∥ +mn

]

+ βn
∥
∥xn − p

∥
∥ + γn

∥
∥wn − p

∥
∥

≤ [

αn

(

1 + rn
)3 + βn

]∥
∥xn − p

∥
∥ + αn

(

1 + rn
)

mn + γn
∥
∥wn − p

∥
∥

≤ (

αn + βn
)(

1 + rn
)3∥
∥xn − p

∥
∥ +

(

1 + rn
)

mn + kn
∥
∥wn − p

∥
∥

≤ (

1 + rn
)3∥
∥xn − p

∥
∥ +

(

1 + rn
)

mn + knM

≤ (

1 + cn
)∥
∥xn − p

∥
∥ + bn,

(3.6)

where cn = (1 + rn)
3 − 1 and bn = (1 + rn)mn + knM. Since

∑∞
n=1 rn < ∞,

∑∞
n=1 kn < ∞,

and
∑∞

n=1 mn < ∞, then
∑∞

n=1 cn < ∞ and
∑∞

n=1 bn < ∞. It follows from Lemma 2.1 that
limn→∞‖xn − p‖ exists. This completes the proof.

Lemma 3.2. LetK be a nonempty closed convex subset of a real uniformly convex Banach space E. Let
T1, T2, T3 : K → E be uniformly L-Lipschitzian nonself asymptotically quasi-non-expansive mappings
with sequences {r(i)n } such that∑∞

n=1 r
(i)
n < ∞, for all i = 1, 2, 3. Suppose that {xn} is defined by (1.6)

with
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞, and

∑∞
n=1 γ

′′
n < ∞, where αn, α

′
n, and α′′

n are three sequences in
[ε, 1 − ε], for some ε > 0. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅, then

lim
n→∞

∥
∥xn − T1xn

∥
∥ = lim

n→∞
∥
∥xn − T2xn

∥
∥ = lim

n→∞
∥
∥xn − T3xn

∥
∥ = 0. (3.7)

Proof. For any p ∈ F, by Lemma 3.1, we see that limn→∞‖xn − p‖ exists. Assume limn→∞‖xn −
p‖ = a, for some a ≥ 0. For all n ≥ 1, let rn = max{r(1)n , r

(2)
n , r

(3)
n } and kn = max{γn, γ ′n, γ ′′n}.
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Then,
∑∞

n=1 rn < ∞ and
∑∞

n=1 kn < ∞. From (3.5), we have

∥
∥yn − p

∥
∥ ≤ (

1 + rn
)2∥
∥xn − p

∥
∥ +mn. (3.8)

Taking lim supn→∞ on both sides in (3.8), since
∑∞

n=1 rn < ∞ and
∑∞

n=1 mn < ∞, we obtain

lim sup
n→∞

∥
∥yn − p

∥
∥ ≤ lim sup

n→∞

∥
∥xn − p

∥
∥ = lim

n→∞
∥
∥xn − p

∥
∥ = a (3.9)

so that

lim sup
n→∞

∥
∥T1(PT1)

n−1yn − p
∥
∥ ≤ lim sup

n→∞

(

1 + rn
)∥
∥yn − p

∥
∥ = lim sup

n→∞

∥
∥yn − p

∥
∥ ≤ a. (3.10)

Next consider

∥
∥T1

(

PT1
)n−1

yn − p + γn
(

wn − xn

)∥
∥ ≤ ∥

∥T1
(

PT1
)n−1

yn − p
∥
∥ + kn

∥
∥wn − xn

∥
∥. (3.11)

Since limn→∞ kn = 0, we have

lim sup
n→∞

∥
∥T1

(

PT1
)n−1

yn − p + γn
(

wn − xn

)∥
∥ ≤ a. (3.12)

In addition,

∥
∥xn − p + γn

(

wn − xn

)∥
∥ ≤ ∥

∥xn − p
∥
∥ + kn

∥
∥wn − xn

∥
∥. (3.13)

This implies that

lim sup
n→∞

∥
∥xn − p + γn

(

wn − xn

)∥
∥ ≤ a. (3.14)

Further, observe that

a = lim
n→∞

∥
∥xn − p

∥
∥

= lim
n→∞

∥
∥αnT1

(

PT1
)n−1

yn + βnxn + γnwn − p
∥
∥

= lim
n→∞

∥
∥αnT1

(

PT1
)n−1

yn +
(

1 − αn

)

xn − γnxn + γnwn −
(

1 − αn

)

p − αnp
∥
∥

= lim
n→∞

∥
∥αnT1

(

PT1
)n−1

yn − αnp + αnγnwn − αnγnxn +
(

1 − αn

)

xn

− (

1 − αn

)

p − γnxn + γnwn − αnγnwn + αnγnxn

∥
∥

= lim
n→∞

∥
∥αn

[

T1
(

PT1
)n−1

yn − p + γn
(

wn − xn

)]

+
(

1 − αn

)[

xn − p + γn
(

wn − xn

)]∥
∥.

(3.15)

By Lemma 2.2, (3.12), (3.14), and (3.15), we have

lim
n→∞

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥ = 0. (3.16)
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Next we will prove that limn→∞‖T2(PT2)n−1zn − xn‖ = 0. Since

∥
∥xn − p

∥
∥ ≤ ∥

∥T1
(

PT1
)n−1

yn − xn

∥
∥ +

∥
∥T1

(

PT1
)n−1

yn − p
∥
∥

≤ ∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥ +

(

1 + rn
)∥
∥yn − p

∥
∥

(3.17)

and limn→∞‖T1(PT1)n−1yn − xn‖ = 0 = limn→∞ rn, we obtain

a = lim
n→∞

∥
∥xn − p

∥
∥ ≤ lim inf

n→∞
∥
∥yn − p

∥
∥. (3.18)

Thus, it follows from (3.10) and (3.18) that

lim
n→∞

∥
∥yn − p

∥
∥ = a. (3.19)

On the other hand, from (3.4), we have
∥
∥zn − p

∥
∥ ≤ [

α′′
n

(

1 + rn
)

+ β′′n
]∥
∥xn − p

∥
∥ + kn

∥
∥un − p

∥
∥

≤ (

1 + rn
)∥
∥xn − p

∥
∥ + kn

∥
∥un − p

∥
∥.

(3.20)

By boundedness of the sequence {un} and by limn→∞ rn = limn→∞ kn = 0, we have

lim sup
n→∞

∥
∥zn − p

∥
∥ ≤ lim sup

n→∞

∥
∥xn − p

∥
∥ = a (3.21)

so that

lim sup
n→∞

∥
∥T2

(

PT2
)n−1

zn − p
∥
∥ ≤ lim sup

n→∞

(

1 + rn
)∥
∥zn − p

∥
∥ ≤ a. (3.22)

Next consider

∥
∥T2

(

PT2
)n−1

zn − p + γ ′n
(

vn − xn

)∥
∥ ≤ ∥

∥T2
(

PT2
)n−1

zn − p
∥
∥ + kn

∥
∥vn − xn

∥
∥. (3.23)

Thus, we have

lim sup
n→∞

∥
∥T2

(

PT2
)n−1

zn − p + γ ′n
(

vn − xn

)∥
∥ ≤ a,

∥
∥xn − p + γ ′n

(

vn − xn

)∥
∥ ≤ ∥

∥xn − p
∥
∥ + kn

∥
∥vn − xn

∥
∥.

(3.24)

This implies that

lim sup
n→∞

∥
∥xn − p + γ ′n

(

vn − xn

)∥
∥ ≤ a. (3.25)

Note that

a = lim
n→∞

∥
∥yn − p

∥
∥

= lim
n→∞

∥
∥α′

nT2
(

PT2
)n−1

zn + β′nxn + γ ′nvn − p
∥
∥

= lim
n→∞

∥
∥α′

n

[

T2
(

PT2
)n−1

zn − p + γ ′n
(

vn − xn

)]

+
(

1 − α′
n

)[

xn − p + γ ′n
(

vn − xn

)]∥
∥.

(3.26)
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It follows from Lemma 2.2, (3.24), and (3.25) that

lim
n→∞

∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥ = 0. (3.27)

Similarly, by using the same argument as in the proof above, we obtain

lim
n→∞

∥
∥T3

(

PT3
)n−1

xn − xn

∥
∥ = 0. (3.28)

Hence,

lim
n→∞

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥ = lim

n→∞
∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥ = lim

n→∞
∥
∥T3

(

PT3
)n−1

xn − xn

∥
∥ = 0,

(3.29)

and this implies that
∥
∥xn+1 − xn

∥
∥ ≤ αn

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥ + kn

∥
∥wn − xn

∥
∥ −→ 0 as n −→ ∞. (3.30)

Since T1 is uniformly L-Lipschitzian mapping, then we have
∥
∥T1

(

PT1
)n−1

xn − xn

∥
∥

≤ ∥
∥T1

(

PT1
)n−1

xn − T1
(

PT1
)n−1

yn

∥
∥ +

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥

≤ L
∥
∥xn − yn

∥
∥ +

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥

≤ L
∥
∥xn − α′

nT2
(

PT2
)n−1

zn − β′nxn − γ ′nvn

∥
∥ +

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥

≤ Lα′
n

∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥ + Lkn

∥
∥vn − xn

∥
∥ +

∥
∥T1

(

PT1
)n−1

yn − xn

∥
∥ −→ 0 as n −→ ∞,

(3.31)
∥
∥xn − T1xn

∥
∥

≤∥∥xn+1−xn

∥
∥+

∥
∥xn+1−T1

(

PT1
)n
xn+1

∥
∥+

∥
∥T1

(

PT1
)n
xn+1−T1

(

PT1
)n
xn

∥
∥+

∥
∥T1

(

PT1
)n
xn−T1xn

∥
∥

≤∥∥xn+1 − xn

∥
∥ +

∥
∥xn+1 − T1

(

PT1
)n
xn+1

∥
∥ + L

∥
∥xn+1 − xn

∥
∥ + L

∥
∥T1

(

PT1
)n−1

xn − xn

∥
∥.

(3.32)

It follows from (3.30), (3.31), and (3.32) that

lim
n→∞

∥
∥xn − T1xn

∥
∥ = 0. (3.33)

Next consider
∥
∥T2

(

PT2
)n−1

xn − xn

∥
∥

≤ ∥
∥T2

(

PT2
)n−1

xn − T2
(

PT2
)n−1

zn
∥
∥ +

∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥

≤ L
∥
∥xn − zn

∥
∥ +

∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥

≤ Lα′′
n

∥
∥T3

(

PT3
)n−1

xn − xn

∥
∥ + Lkn

∥
∥un − xn

∥
∥ +

∥
∥T2

(

PT2
)n−1

zn − xn

∥
∥ −→ 0 as n −→ ∞,

(3.34)
∥
∥xn − T2xn

∥
∥

≤∥∥xn+1−xn

∥
∥+

∥
∥xn+1−T2

(

PT2
)n
xn+1

∥
∥+

∥
∥T2

(

PT2
)n
xn+1−T2

(

PT2
)n
xn

∥
∥+

∥
∥T2

(

PT2
)n
xn−T2xn

∥
∥

≤∥∥xn+1 − xn

∥
∥ +

∥
∥xn+1 − T2

(

PT2
)n
xn+1

∥
∥ + L

∥
∥xn+1 − xn

∥
∥ + L

∥
∥T2

(

PT2
)n−1

xn − xn

∥
∥.

(3.35)
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It follows from (3.30), (3.34), and (3.35) that

lim
n→∞

∥
∥xn − T2xn

∥
∥ = 0. (3.36)

Finally, we consider

∥
∥xn − T3xn

∥
∥

≤∥∥xn+1−xn

∥
∥+

∥
∥xn+1−T3

(

PT3
)n
xn+1

∥
∥+

∥
∥T3

(

PT3
)n
xn+1−T3

(

PT3
)n
xn

∥
∥+

∥
∥T3

(

PT3
)n
xn−T3xn

∥
∥

≤∥∥xn+1 − xn

∥
∥ +

∥
∥xn+1 − T3

(

PT3
)n
xn+1

∥
∥ + L

∥
∥xn+1 − xn

∥
∥ + L

∥
∥T3

(

PT3
)n−1

xn − xn

∥
∥.

(3.37)

It follows from (3.29), (3.30), and (3.37) that

lim
n→∞

∥
∥xn − T3xn

∥
∥ = 0. (3.38)

Therefore,

lim
n→∞

∥
∥xn − T1xn

∥
∥ = lim

n→∞
∥
∥xn − T2xn

∥
∥ = lim

n→∞
∥
∥xn − T3xn

∥
∥ = 0. (3.39)

This completes the proof.

Now, we give our main theorems of this paper.

Theorem 3.3. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
Let T1, T2, T3 : K → E be uniformly L-Lipschitzian and nonself asymptotically quasi-non-expansive
mappings with sequences {r(i)n } such that

∑∞
n=1 r

(i)
n < ∞, for all i = 1, 2, 3, satisfying condition (B).

Suppose that {xn} is defined by (1.6) with
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞, and

∑∞
n=1 γ

′′
n < ∞, where

αn, α
′
n, and α′′

n are three sequences in [ε, 1 − ε], for some ε > 0. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅,
then {xn} converges strongly to a common fixed point of T1, T2, and T3.

Proof. It follows from Lemma 3.2 that limn→∞‖xn −T1xn‖ = limn→∞‖xn −T2xn‖ = limn→∞‖xn −
T3xn‖ = 0. Since T1, T2, and T3 satisfy condition (B), we have limn→∞ d(xn, F) = 0.

From Lemma 3.1 and the proof of Qihou [5], we can obtain that {xn} is a Cauchy
sequence in K. Assume that limn→∞ xn = p ∈ K. Since limn→∞‖xn − T1xn‖ = limn→∞‖xn −
T2xn‖ = limn→∞‖xn − T3xn‖ = 0, by the continuity of T1, T2, and T3, we have p ∈ F, that is, p is
a common fixed point of T1, T2, and T3. This completes the proof.

Corollary 3.4. Let K be a nonempty closed convex subset of a real uniformly convex Banach space
E. Let T1, T2, T3 : K → E be nonself asymptotically nonexpansive mappings with sequences {r(i)n }
such that

∑∞
n=1r

(i)
n < ∞, for all i = 1, 2, 3, satisfying condition (B). Suppose that {xn} is defined by

(1.6) with
∑∞

n=1 γn < ∞,
∑∞

n=1 γ
′
n < ∞, and

∑∞
n=1 γ

′′
n < ∞, where αn, α

′
n, and α′′

n are three sequences
in [ε, 1 − ε], for some ε > 0. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅, then {xn} converges strongly to a
common fixed point of T1, T2, and T3.

Proof. Since every nonself asymptotically nonexpansive mapping is uniformly L-Lipschitzian
and nonself asymptotically quasi-non-expansive, the result can be deduced immediately
from Theorem 3.3. This completes the proof.
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Theorem 3.5. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
Let T1, T2, T3 : K → E be uniformly L-Lipschitzian and nonself asymptotically quasi-non-expansive
mappings with sequences {r(i)n } such that

∑∞
n=1 r

(i)
n < ∞, for all i = 1, 2, 3. Suppose that {xn} is

defined by (1.6) with
∑∞

n=1 γn < ∞,
∑∞

n=1γ
′
n < ∞, and

∑∞
n=1 γ

′′
n < ∞, where αn, α

′
n, and α′′

n are three
sequences in [ε, 1 − ε], for some ε > 0. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅ and one of T1, T2, and T3 is
demicompact, then {xn} converges strongly to a common fixed point of T1, T2, and T3.

Proof. Without loss of generality, we may assume that T1 is demicompact. Since limn→∞‖xn −
T1xn‖ = 0, there exists a subsequence {xnj} ⊂ {xn} such that xnj → x∗ ∈ K. Hence, from (3.39),
we have

∥
∥x∗ − Tix

∗∥∥ = lim
n→∞

∥
∥xnj − Tixnj

∥
∥ = 0, i = 1, 2, 3. (3.40)

This implies that x∗ ∈ F. By the arbitrariness of p ∈ F, from Lemma 3.1, and taking p = x∗,
similarly we can prove that

lim
n→∞

∥
∥xn − x∗∥∥ = d, (3.41)

where d ≥ 0 is some nonnegative number. From xnj → x∗, we know that d = 0, that is,
xn → x∗. This completes the proof.

Corollary 3.6. Let K be a nonempty closed convex subset of a real uniformly convex Banach space
E. Let T1, T2, T3 : K → E be nonself asymptotically nonexpansive mappings with sequences {r(i)n }
such that

∑∞
n=1 r

(i)
n < ∞, for all i = 1, 2, 3. Suppose that {xn} is defined by (1.6) with

∑∞
n=1 γn < ∞,

∑∞
n=1 γ

′
n < ∞, and

∑∞
n=1 γ

′′
n < ∞, where αn, α

′
n, and α′′

n are three sequences in [ε, 1 − ε], for some
ε > 0. If F = F(T1) ∩ F(T2) ∩ F(T3)/=∅ and one of T1, T2, and T3 is demicompact, then {xn}
converges strongly to a common fixed point of T1, T2, and T3.

Acknowledgments

The authors would like to thank the referee and the editor for their careful reading of the
manuscript and their many valuable comments and suggestions. This paper was supported
by the National Natural Science Foundation of China (Grant no. 10671145).

References

[1] W. R. Mann, “Mean value methods in iteration,” Proceedings of the American Mathematical Society, vol.
4, no. 3, pp. 506–510, 1953.

[2] S. Ishikawa, “Fixed points and iteration of a nonexpansive mapping in a Banach space,” Proceedings
of the American Mathematical Society, vol. 59, no. 1, pp. 65–71, 1967.

[3] K. K. Tan and H. K. Xu, “Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process,” Journal of Mathematical Analysis and Applications, vol. 178, no. 2, pp. 301–308, 1993.

[4] J. Schu, “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings,”
Bulletin of the Australian Mathematical Society, vol. 43, no. 1, pp. 153–159, 1991.

[5] Q.H. Liu, “Iterative sequences for asymptotically quasi-nonexpansivemappingswith errormember,”
Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 18–24, 2001.

[6] N. Shahzad and A. Udomene, “Approximating common fixed points of two asymptotically quasi-
nonexpansive mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2006, Article ID
18909, 10 pages, 2006.

[7] C. E. Chidume, E. U. Ofoedu, and H. Zegeye, “Strong and weak convergence theorems for
asymptotically nonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol. 280,
no. 2, pp. 364–374, 2003.



C. Wang and J. Zhu 11

[8] L. Wang, “Strong and weak convergence theorems for common fixed point of nonself asymptotically
nonexpansivemappings,” Journal of Mathematical Analysis and Applications, vol. 323, no. 1, pp. 550–557,
2006.

[9] M. A. Noor, “New approximation schemes for general variational inequalities,” Journal of
Mathematical Analysis and Applications, vol. 251, no. 1, pp. 217–229, 2000.

[10] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear
Mechanics, vol. 9 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1989.

[11] B. Xu and M. A. Noor, “Fixed-point iterations for asymptotically nonexpansive mappings in Banach
spaces,” Journal of Mathematical Analysis and Applications, vol. 267, no. 2, pp. 444–453, 2002.

[12] Y. J. Cho, H. Zhou, and G. Guo, “Weak and strong convergence theorems for three-step iterations
with errors for asymptotically nonexpansive mappings,” Computers & Mathematics with Applications,
vol. 47, no. 4-5, pp. 707–717, 2004.

[13] S. Plubtieng, R. Wangkeeree, and R. Punpaeng, “On the convergence of modified Noor iterations with
errors for asymptotically nonexpansive mappings,” Journal of Mathematical Analysis and Applications,
vol. 322, no. 2, pp. 1018–1029, 2006.

[14] H. F. Senter and W. G. Dotson Jr., “Approximating fixed points of nonexpansive mappings,”
Proceedings of the American Mathematical Society, vol. 44, no. 2, pp. 375–380, 1974.

[15] J. Schu, “Iterative construction of fixed points of strictly pseudocontractive mappings,” Applicable
Analysis, vol. 40, no. 2-3, pp. 67–72, 1991.


	1. Introduction
	2. Preliminaries and lemmas
	3. Main results
	Acknowledgments
	References

